Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-scc96 Total loading time: 0.149 Render date: 2021-06-20T00:10:20.095Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units

Published online by Cambridge University Press:  05 July 2018

J. P. Cuif
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
Y. Dauphin
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
B. Farre
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
G. Nehrke
Affiliation:
AWI-Polar Research Institute, Postfach 120161, Bremerhaven, D- 27515, Germany
J. Nouet
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
M. Salomé
Affiliation:
ESRF, 6 rue J. Horowitz, BP 220, Grenoble Cedex 9, F-38043, France
Corresponding

Abstract

Synchrotron-based XANES characterization of sulphated sulphur combined with atomic force microscopy and transmission electron microscopy (imaging and diffraction) allow insights into the crystallization of the calcareous units produced by invertebrates. As a result of a series of converging data, reticulate crystallization of the amorphous Ca-carbonate molecules conveyed to the micron-thick growth layer by the sumicrometric organo-mineral units seems a reasonable hypothesis, providing us with a method of explaining the multiple and taxonomy-linked ‘vital effects’ which have long been recognized among the calcareous biocrystals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

Addadi, L., Moradian, J., Shai, E., Maroudas, N. and Weiner, S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calref crystal nucleation. Relevance to biomineralization. Proceedings of the National Academy of Science U.S.A., 84, 2732–2736.CrossRefGoogle ScholarPubMed
Adkins, J.F., Boyle, E.A., Cutty, W.B. and Lutringer, A. (2003) Stable isotopes in deep-sea corals and a new mechanisms for “vital effects”. Geochimica et Cosmochimica Ada, 67/6, 1137–1143.CrossRefGoogle Scholar
Baronnet, A., Cuif, J.P., Dauphin, Y., Farre, B. and Nouet, J. (2008) Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcitic prisms of the Pelecypod Pinctada margaritifer. (Mollusca) at the sub-micrometre to nanometre ranges. Mineralogical Magazine, (in press).CrossRefGoogle Scholar
Crenshaw, M. (1980) Mechanisms of shell formation and dissolution. Pp. 115–132 in: Skeletal Growth of Aquatic Organism. (Rhoads, D.C. and Lutz, R.A., editors) Plenum press.Google Scholar
Cuif, J.P., Dauphin, Y., Doucet, J., Salome, M. and Susini, J. (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochimica et Cosmochimica Ada, 67, 75–83.CrossRefGoogle Scholar
Cuif, J.P., Dauphin, Y., Meibom, A. and Guzman, N. (2005) Structural and biochemical patterns at the micro and nanoscales in mollusc prisms and coral fibres. Pp. 215–224 in: Biomineralization from Paleontology to Material Scienc. (Arias, J.L. and Fernandez, M.S., editors). Proceedings of the 9th Biomineralization Symposium, Pucon, Chile. Editorial Universitaria, Santiago.Google Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J. and Williams, C.T. (2003) In situ chemical speciation of sulfür in calcitic biominerals and the simple prism concept. Journal of Structura. Biology, 142, 272–280.Google Scholar
Dauphin, Y., Ball, A.D., Cotte, M., Cuif, J.P., Meibom, A., Salome, M., Susini, J. and Williams, C.T. (2008) Structure and composition of the nacre—prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Analytical and Bioanalytical Chemistry, 309, 1659–1669.Google Scholar
Goreau, T. (1956) Histochemistry of mucopolysacchar-ide-like substances and alkaline phosphatase in Madreporaria. Nature, 4518, 1029–1030.Google Scholar
Guzman, N., Ball, A.D., Cuif, J.P., Dauphin, Y., Denis, A. and Ortlieb, L. (2007) Subdaily growth patterns and organo-mineral nanostructure of the growth layers in the calcitic prisms of the shell of concholepas concholepa. Bruguiere, 1789 (Gastropoda, Muricidae). Microscopy and Microanalysis, 13, 397–405.CrossRefGoogle Scholar
Marsh, E., Ridalla, A.L., Azadib, P. and Dukea, PJ. (2002) Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calref. Journal of Structural Biology, 139, 39–45.CrossRefGoogle ScholarPubMed
Volkmer, D. (2007) Biologically inspired crystallization of calcium carbonate beneath monolayers: a critical overview. Pp. 65–87 in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistr. (Behrens, P. and Baeuerlein, E., editors). Wiley.Google Scholar
Wainwright, S.A. (1963) Skeletal organization in the coral Podllopora damicornis. Quarterly Journal of Microscopical Science, 104, 169–183.Google Scholar
Weiner, S., Traub, W. and Parker, S.B. (1984) Macromolecules in mollusc shells and their functions in biomineralization. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, Mineral Phases in Biology, 425–43.Google Scholar
36
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *