Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-7xdgm Total loading time: 0.256 Render date: 2021-07-25T03:18:01.622Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Deep Earth mineralogy revealed by ultrahigh-pressure experiments

Published online by Cambridge University Press:  05 July 2018

Kei Hirose
Affiliation:
Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
Corresponding
E-mail address:

Abstract

Ultrahigh-pressure and -temperature (P-T) experimental techniques have progressed rapidly in recent years. By combining them with X-ray diffraction measurements at synchrotron radiation facilities, it is now possible to examine deep Earth mineralogy in situ at relevant high P-T conditions in a laser-heated diamond anvil cell (DAC). The lowermost part of the mantle, known as the D″ layer, has long been enigmatic because of a number of unexplained seismological features. Nevertheless, the discovery of a phase transition from MgSiO3 perovskite to ‘post-perovskite’ above 120 GPa and 2400 K indicates that post-perovskite is a principal constituent in the lowermost mantle, which is compatible with seismic observations. The ultrahigh P-T conditions of the Earth’s core have not been accessible by static experiments, but the structure and phase transition of Fe and Fe-alloys are now being examined up to 400 GPa and 6000 K by laser-heated DAC studies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below.

References

Alfè, D., Gillan, M.J. and Price, G.D. (2007) Temperature and composition of the Earth’s core. Contemporary Physics, 48, 6380.CrossRefGoogle Scholar
Allègre, C.J., Poirier, J.P., Humler, E. and Hofmann, A.W. (1995) The chemical composition of the Earth. Earth and Planetary Science Letters, 134, 515526.CrossRefGoogle Scholar
Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. and Morard, G. (2013) Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340, 464466.CrossRefGoogle ScholarPubMed
Belonoshko, A.B., Ahuja, R. and Johansson, B. (2003) Stability of the body-centered-cubic phase of iron in the Earth’s inner core. Nature, 424, 10321034.CrossRefGoogle Scholar
Belonoshko, A.B., Arapan, S., Martonak, R. and Rosengren, A. (2010) MgO phase diagram from first principles in wide pressure-temperature range. Physical Reviews B, 81, 054110.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227286.CrossRefGoogle Scholar
Boehler, R. (1993) Temperatures in the Earth’s core from melting-point measurements of iron at high static pressure. Nature, 363, 534536.CrossRefGoogle Scholar
Buffett, B.A., Garnero, E.J. and Jeanloz, R. (2000) Sediments at the top of Earth’s core. Science, 290, 13381342.CrossRefGoogle ScholarPubMed
Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G. and Prakapenka, V.B. (2007) Partial melting in the ironsulfur system at high pressure: a synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119128.CrossRefGoogle Scholar
Catalli, K., Shim, S.-H. and Prakapenka, V. (2009) Thickness and Clapeyron slope of the postperovskite boundary. Nature, 462, 782785.CrossRefGoogle Scholar
Chen, B., Gao, L., Lavina, B., Dera, P., Alp, E.E., Zhao, J. and Li, J. (2012) Magneto-elastic coupling in compressed Fe7C3 supports carbon in Earth’s inner core. Geophysical Research Letters, 39, http://dx.doi.org/10.1029/2012GL052875. CrossRefGoogle Scholar
Coppari, F., Smith, R.F., Eggert, J.H., Wang, J., Rygg, J.R., Lazicki, A., Hawreliak, J.A., Collins, G.W. and Duffy, T.S. (2013) Phase transformations and experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6, http://dx.doi.org/10.1038/NGEO1948. CrossRefGoogle Scholar
Cui, H., Zhang, Z. and Zhang, Y. (2013) The effect of Si and S on the stability of bcc iron with respect to tetragonal strain at the Earth’s inner core conditions. Geophysical Research Letters, 40, http://dx.doi.org/10.1002/grl.50582. Google Scholar
Dubrovinsky, L., Dubrovinskaia, N., Narygina, O., Kantor, I., Kuznetzov, A., Prakapenka, V.B., Vitos, L., Johansson, B., Mikhaylushkin, A.S., Simak, S.I. and Abrikosov, I.A. (2007) Body-centered cubic iron-nickel alloy in Earth’s core. Science, 316, 18801883.CrossRefGoogle ScholarPubMed
Fischer, R.A. and Campbell, A.J. (2010) High-pressure melting of wüstite. American Mineralogist, 95, 14731477.CrossRefGoogle Scholar
Fischer, R.A., Campbell, A.J., Lord, O.T., Shofner, G.A., Dera, P. and Prakapenka, V.B. (2011) Phase transition and metallization of FeO at high pressures and temperatures. Geophysical Research Letters, 38, L24301.Google Scholar
Fischer, R.A., Campbell, A.J., Reaman, D.M., Miller, N.A., Heinz, D.L., Dera, P. and Prakapenka, V.B. (2013) Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth and Planetary Science Letters, 373, 5464.CrossRefGoogle Scholar
Fiquet, G., Auzende, A.L., Siebert, J., Corgne, A., Bureau, H., Ozawa, H. and Garbarino, G. (2010) Melting of peridotite to 140 Gigapascals. Science, 329, 15161518.CrossRefGoogle ScholarPubMed
Fukai, Y. and Suzuki, T. (1986) Iron-water reaction under high pressure and its implication in the evolution of the Earth, Journal of Geophysical Research, 91, 92229923.CrossRefGoogle Scholar
Grocholski, B., Catalli, K., Shim, S.-H. and Prakapenka, V. (2012) Mineralogical effects on the detectability of the postperovskite boundary. Proceedings of the National Academy of Science USA, 109, 22752279.CrossRefGoogle ScholarPubMed
Hernlund, J.W., Thomas, C. and Tackley, P.J. (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature, 434, 882886.CrossRefGoogle ScholarPubMed
Haigis, V., Salanne, M. and Jahn, S. (2012) Thermal conductivity of MgO, MgSiO3 perovskite and postperovskite in the Earth’s deep mantle. Earth and Planetary Science Letters, 355–356, 102108.CrossRefGoogle Scholar
Hirose, K. and Kawamura, K. (2007) Discovery of postperovskite phase transition and implications for the nature of the D” layer of the mantle. Pp 37–46 in: Advances in High-Pressure Mineralogy (E. Ohtani, editor). Geological Society of America Special Paper, 421, http://dx.doi.org/10.1130/2007.2421(03). Google Scholar
Hirose, K., Labrosse, S. and Hernlund, J. (2013) Composition and state of the core. Annual Review of Earth and Planetary Sciences, 41, 657–91.CrossRefGoogle Scholar
Holme, R. (1998) Electromagnetic core–mantle coupling: II. Probing deep mantle conductance. Pp. 139–151 in: The Core–Mantle Boundary Region (M. Gurnis, M.E. Wysession, E. Knittle and B.A. Buffett, editors). American Geophysical Union Geodynamics Series, 28, Washington, DC.Google Scholar
Iitaka, T., Hirose, K., Kawamura, K. and Murakami, M. (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature, 430, 442444.CrossRefGoogle ScholarPubMed
Jarchow, O., Klaska, K.H. and Werk, M. (1981) Erste seltene Erden-Aluminium-Germanate vom Typ REAlGeO5. Naturwissenschaften, 68, 92.CrossRefGoogle Scholar
Kuwayama, Y., Hirose, K., Sata, N. and Ohishi, Y. (2008) Phase relations of iron and iron-nickel alloys up to 300 GPa: implications for composition and structure of the Earth’s inner core. Earth and Planetary Science Letters, 273, 379–85.CrossRefGoogle Scholar
Lay, T. and Helmberger, D.V. (1983) A lower mantle S-wave triplication and the shear velocity structure of D”. Geophysical Journal of the Royal Astronomical Society, 75, 799838.CrossRefGoogle Scholar
Liu, L.-g. (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophysical Research Letters, 1, 277280.CrossRefGoogle Scholar
McWilliams, R.S., Spaulding, D.K., Eggert, J.H., Celliers, P.M., Hicks, D.G., Smith, R.F., Collins, G.W. and Jeanloz, R. (2012) Metallization of magnesium oxide at high pressure and temperature, Science, 338, 13301333.CrossRefGoogle Scholar
Mookherjee, M., Nakajima, Y., Steinle-Neumann, G., Glazyrin, K., Wu, X., Dubrovinsky, L., McCammon, C. and Chumakov, A. (2011) High-pressure behavior of iron carbide (Fe7C3) at inner core conditions, Journal of Geophysical Research, 116, http://dx.doi.org/10.1029/2010JB007819. CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y. (2004) Post-perovskite phase transition in MgSiO3 . Science, 304, 855858.CrossRefGoogle ScholarPubMed
Murakami, M., Hirose, K., Sata, N. and Ohishi, Y. (2005) Post-perovskite phase transition and crystal chemistry in the pyrolitic lowermost mantle, Geophysical Research Letters, 32, http://dx.doi.org/10.1029/2004GL021956. CrossRefGoogle Scholar
Nakagawa, T. and Tackley, P.J. (2004) Effects of a perovskite-post perovskite phase change near coremantle boundary in compressible mantle convection. Geophysical Research Letters, 31, http://dx.doi.org/10.1029/2004GL020648. CrossRefGoogle Scholar
Németh, P., Leinenweber, K., Groy, T.L. and Buseck, P.R. (2007) A new high-pressure CaGe2O5 polymorph with 5- and 6-coordinated germanium. American Mineralogist, 92, 441443.CrossRefGoogle Scholar
Nomura, R., Hirose, K., Uesugi, K., Ohishi, Y., Tsuchiyama, A. and Ueno, Y. (2014) Low coremantle boundary temperature inferred from the solidus of pyrolite. Science, 343, 522525.CrossRefGoogle Scholar
Oganov, A.R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature, 430, 445448.CrossRefGoogle ScholarPubMed
Ohta, K., Hirose, K., Lay, T., Sata, N. and Ohishi, Y. (2008a) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core–mantle boundary. Earth and Planetary Science Letters, 267, 107117.CrossRefGoogle Scholar
Ohta, K., Onoda, S., Hirose, K., Sinmyo, R., Shimizu, K., Sata, N., Ohishi, Y. and Yasuhara, A. (2008b) The electrical conductivity of post-perovskite in Earth’s D” layer. Science, 320, 8991.CrossRefGoogle Scholar
Ohta, K., Yagi, T., Taketoshi, N., Hirose, K., Komabayashi, T., Baba, T., Ohishi, Y. and Hernlund, J. (2012a) Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth and Planetary Science Letters, 349–350, 109115.CrossRefGoogle Scholar
Ohta, K., Cohen, R., Hirose, K., Haule, K., Shimizu, K. and Ohishi, Y. (2012b) Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Physical Review Letters, 108, 026403.CrossRefGoogle Scholar
Okuchi, T. (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science, 278, 17811784.CrossRefGoogle ScholarPubMed
Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y. and Seto, Y. (2011a) Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.CrossRefGoogle Scholar
Ozawa, H., Takahashi, F., Hirose, K., Ohishi, Y. and Hirao, N. (2011b) Phase transition of FeO and stratification in Earth’s outer core. Science, 334, 792794.CrossRefGoogle Scholar
Ozawa, H., Hirose, K., Suzuki, T., Ohishi, Y. and Hirao, N. (2013) Decomposition of Fe3S above 250GPa. Geophysical Research Letters, 40, http://dx.doi.org/10.1002/grl.50946. CrossRefGoogle Scholar
Rodi, F. and Babel, D. (1950) Erdalkaliiridium(IV)- oxide: kristallstruktur von CaIrO3. Zeitschrift für anorganische und allgemeine Chemie, 336, 1723.CrossRefGoogle Scholar
Shahar, A., Ziegler, K., Young, E.D., Ricolleau, A., Schauble, E. and Fei, Y. (2009) Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth’s core formation. Earth and Planetary Science Letters, 288, 228234.CrossRefGoogle Scholar
Sidorin, I., Gurnis, M. and Helmberger, D.V. (1999) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 13261331.CrossRefGoogle ScholarPubMed
Siebert, J., Badro, J., Antonangeli, D. and Ryerson, F.J. (2013) Terrestrial accretion under oxidizing conditions, Science, 339, 11941197.CrossRefGoogle Scholar
Sinmyo, R., Hirose, K., Muto, S., Ohishi, Y. and Yasuhara, A. (2011) The valence state and partitioning of iron in the Earth’s lowermost mantle. Journal of Geophysical Research, 116, http://dx.doi.org/10.1029/2010JB008179. CrossRefGoogle Scholar
Stixrude, L. (2012) Structure of iron to 1 Gbar and 40,000 K. Physical Review Letters, 108, 055505.CrossRefGoogle Scholar
Takafuji, N., Hirose, K., Mitome, M. and Bando, Y. (2005) Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core. Geophysical Research Letters, 32, L06313.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Sata, N. and Ohishi, Y. (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D” layer. Earth and Planetary Science Letters, 277, 130136.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Ohishi, Y. and Tatsumi, Y. (2010a) The structure of iron in Earth’s inner core. Science, 330, 359361.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Sata, N. and Ohishi, Y (2010b) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low pressure analogue to MgSiO3 . Physics of the Earth and Planetary Interiors, 181, 5459.CrossRefGoogle Scholar
Tateno, S., Hirose, K., Komabayashi, T., Ozawa, H. and Ohishi, Y. (2012a) The structure of Fe-Ni alloy in Earth’s inner core. Geophysical Research Letters, 39, L12305.CrossRefGoogle Scholar
Tateno, S., Hirose, K. and Ohishi, Y. (2012b) The crystal structures of Fe-Ni and Fe-Si alloys in Earth’s inner core conditions. Abstract, 2012 Fall Meeting, 3–7 Dec, American Geophysical Union, San Francisco, California, USA.Google Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K. and Wentzcovitch, R.M. (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth and Planetary Science Letters, 224, 241248.CrossRefGoogle Scholar
Umemoto, K. and Wentzcovitch, R.A. (2011) Two-stage dissociation in MgSiO3 post-perovskite. Earth and Planetary Science Letters, 311, 225229.CrossRefGoogle Scholar
Vočadlo, L., Alfè, D., Gillan, M.J., Wood, I.G., Brodholt, J.P. and Price, G.D. (2003) Possible thermal and chemical stabilization of body-centered- cubic iron in the Earth’s core. Nature, 424, 536539.CrossRefGoogle Scholar
Wood, B.J. (1993) Carbon in the core. Earth and Planetary Science Letters, 117, 593607.CrossRefGoogle Scholar
Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., Xu, F., Higo, Y. and Funakoshi, K. (2014) Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, http://dx.doi.org/10.1016/j.pepi.2014.01.013. CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deep Earth mineralogy revealed by ultrahigh-pressure experiments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Deep Earth mineralogy revealed by ultrahigh-pressure experiments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Deep Earth mineralogy revealed by ultrahigh-pressure experiments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *