Hostname: page-component-cd4964975-g4d8c Total loading time: 0 Render date: 2023-04-02T07:11:18.762Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Crystal chemistry of zinc incorporation in strunzite-group minerals containing zeolitic water

Published online by Cambridge University Press:  02 January 2018

I. E. Grey*
CSIRO Mineral Resources, Private Bag 10, Clayton, 3169, Victoria, Australia
E. Keck
Algunderweg 3, D-92694 Etzenricht, Germany
C. M. MacRae
CSIRO Mineral Resources, Private Bag 10, Clayton, 3169, Victoria, Australia
A. M. Glenn
CSIRO Mineral Resources, Private Bag 10, Clayton, 3169, Victoria, Australia
A. R. Kampf
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
B. P. Nash
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
S. J. Mills
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia


A comparative study is presented of the chemistry and crystallography of zinc-bearing strunzites from Hagendorf Süd, Bavaria, Germany and the Sitio do Castelo mine, Folgosinho, Portugal. Electron microprobe analyses of samples from the two localities show quite different cation substitutions. The Hagendorf Süd mineral is a Zn-bearing ferristrunzite, with compositional zoning due to Zn2+ replacing predominantly Fe3+ as well as minor Mn2+, whereas the Portugese mineral is a Zn-bearing strunzite, in which Zn2+ replaces Mn2+, with minor replacement of Fe3+ by Mn3+. Zincostrunzite, with dominant Zn in the interlayer octahedrally coordinated site, is a new strunzite-group mineral that has been characterized at both locations. Analysis of single-crystal synchrotron data for zinc-bearing ferristrunzite and zincostrunzite crystals from Hagendorf Süd show that the structures of both minerals contain zeolitic water in the interlayer region. The formula for strunzite-group minerals containing the zeolitic water is MFe23+(PO4)2(OH)2·6.5H2O, M=Fe, Mn, Zn. This formulation agrees with that found for zincostrunzite from the Sitio do Castelo mine, but differs from that reported previously for strunzite, MFe2+(PO4)2(OH)2·6H2O, which has no interlayer water. Interestingly, the zincostrunzites from the two localities differ in the location of the interlayer water molecule, with a corresponding difference in the H bonding.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–247.Google Scholar
Fanfani, L., Tomassini, M., Zanazzi, P.F. and Zanzari, A. R. (1978) The crystal structure of strunzite, a contribution to the crystal chemistry of basic ferricmanganous hydrated phosphates. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 7787.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Frondel, C. (1958) Strunzite, a new mineral. Naturwissenschaften, 45, 3738.CrossRefGoogle Scholar
Grey, I.E., MacRae, C.M., Keck, E. and Birch, W.D. (2012) Aluminium-bearing strunzite derived from jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineralogical Magazine, 76, 11651174.CrossRefGoogle Scholar
Kampf, A.R., Grey, I.E., Alves, P., Mills, S.J., Nash, B.P., MacRae, C.M. and Keck, E. (2016) Zincostrunzite, IMA 2016-023. CNMNC Newsletter No. 32, August 2016, page 918; Mineralogical Magazine, 80, 915922.Google Scholar
Kampf, A.R., Grey, I.E., Alves, P., Mills, S.J., Nash, B.P., MacRae, C.M. and Keck, E. (2017) Zincostrunzite, ZnFe2 3+ (PO4)2(OH)2·6.5H2O, a new mineral from the Sitio do Castelo mine, Portugal, and the Hagendorf- Süd pegmatite, Germany. European Journal of Mineralogy, 29, 315322.CrossRefGoogle Scholar
Kolitsch, U., Atencio, D., Chukanov, N.V., Zubkova, N. V., Menezes Filho, A.D., Coutinho, J.M.V., Birch, W. D., Schlüter, J., Kampf, A.R., Steele, I.M., Favreau, G., Nasdala, L., Möckel, S., Giester, G. and Pushcharovsky, D.Yu. (2010) Bendadaite, a new iron arsenate mineral of the arthurite group. Mineralogical Magazine, 74, 469486.CrossRefGoogle Scholar
Krivovichev, S.V. (2004) Topological and geometrical isomerism in minerals and inorganic compounds with laueite-type heteropolyhedral sheets. Neues Jahrbuch für Mineralogie Monatshefte, 2004, 209220.CrossRefGoogle Scholar
Mills, S.J. and Grey, I.E. (2015) Nomenclature for the laueite supergroup. Mineralogical Magazine, 79, 243246.CrossRefGoogle Scholar
Peacor, D.R., Dunn, P.J. and Simmons, W.B. (1983) Ferrostrunzite, the ferrous iron analogue of strunzite from Mullica Hill, New Jersey. Neues Jahrbuch für Mineralogie Monatshefte, 1983, 524528.Google Scholar
Peacor, D.R., Dunn, P.J., Simmons, W.B. and Ramik, R.A. (1987) Ferristrunzite, a new member of the strunzite group, from Blaton, Belgium. Neues Jahrbuch für Mineralogie Monatshefte, 1987, 453457.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.CrossRefGoogle Scholar