Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-5628d Total loading time: 0.191 Render date: 2021-05-07T17:20:59.432Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The creation of neotypes for hydrotalcite

Published online by Cambridge University Press:  02 January 2018

Stuart J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
Andrew G. Christy
Affiliation:
Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia
Ralf T. Schmitt
Affiliation:
Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
Corresponding
E-mail address:

Abstract

Two samples of hydrotalcite, probably worked on by Carl Christian Hochstetter, have been discovered in the Museum für Naturkunde Berlin and given neotype status by the IMA CNMNC (proposal 15-J). The two samples from Snarum, Norway, have been reanalysed and give Mg5.84Al2.07Fe0.09(OH)16(CO3)1.08·4H2O and Mg5.75Al2.21Fe0.04(OH)16(CO3)1.12·4H2O. Both samples have a mix of the two polytypes 3R/2H in the ratio of 69.2/30.8 and 69.5/30.5%. A discussion of hydrotalcite and hydrotalcite-like phase occurrences in the literature is also presented.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below.

References

Allmann, R. (1968) Magnesium aluminum carbonate hydroxide tetrahydrate: a discussion. American Mineralogist, 53, 10571059.Google Scholar
Allmann, R. and Jepsen, H.P. (1969) Die Struktur des Hydrotalkits. Neues Jahrbuch fur Mineralogie, Monatshefte, 1969, 544551.Google Scholar
Arakcheeva, A.V., Pushcharovskiy, D.Y.u., Rastsvetaeva, R.K., Atencio, D. and Lubman, D.U. (1996) Crystal structure and comparative chemistry of Al2Mg4(OH)12(CO3)-3H2O, a new mineral from the hydrotalref-manasseite group. Crystallography Reports, 41, 972981.Google Scholar
Bellotto, M., Rebours, B., Clause, O., Lynch, J., Bazin, D. and Elkaï m, E. (1996) A reexamination of hydrotalref crystal chemistry. Journal of Physical Chemistry, 1996, 85278534.CrossRefGoogle Scholar
Bridges, T.F., Green, D.I., Rumsey, M.S. and Leppington, C.M. (2008) A review of the mineralization at Red Gill mine, Caldbeck Fells, Cumbria, England. Journal of the Russell Society, 11, 2947.Google Scholar
Chao, G.Y. and Gault, R.A. (1997) Quintinite-2H quinitinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalref/manasseite group. The Canadian Mineralogist, 35, 15411549.Google Scholar
Dunn, P.J. and Mandarino, J.A. (1987) Formal definitions of type mineral specimens. American Mineralogist, 72, 12691270.Google Scholar
Foshag, W.F. (1920) The chemical composition of hydrotalref and the hydrotalcite group of minerals. Proceedings of the United States National Museum, 58, 147153.CrossRefGoogle Scholar
Frondel, C. (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups. American Mineralogist, 26, 295315.Google Scholar
Hochstetter, C. (1842) Untersuchung über die zusam-mensetzung einiger Mineralien. Journal für Praktische Chemie, 27, 375378.CrossRefGoogle Scholar
Hoppe, G. (2001) Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin, Teil 4: Das Mineralogische Museum der Universität Berlin, unter Christian Samuel Weiss von 1810 bis 1856. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 4, 3—27.Google Scholar
Hoppe, G. (2003) Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin, Teil 5: Vom Mineralogischen Museum im Hauptgebäude der Universität zu den zwei geowissenschaftlichen Institutionen im Museum für Naturkunde 1856 bis 1910. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 6, 3—51.Google Scholar
Kim, H.-M., Lee, J.-Y. and Oh, J.-M. (2015) Controlling Mg(II)/Al(III) metal ratio in hydrotalref type anionic clays. Euroclay Edinburgh 2015, Edinburgh, United Kingdom, 5-10 July, 2015 [Abstract].Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y.u. (2010a) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 74, 821—832.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y.u. (2010b) Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M. First evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides. Mineralogical Magazine, 74, 833—840.CrossRefGoogle Scholar
Ladenburg, A. (1884) Marchand, Richard Felix. Allgemeine Deutsche Biographie, 20, 296 [Historische Kommission bei der Bayerischen Akademie der Wissenschaften, editor].Google Scholar
Menezes, L.A.D.. and Martins, J.M. (1984) The Jacupiranga mine, São Paulo, Brazil. Mineralogical Record, 15, 261270.Google Scholar
Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M. and Francis, C.A. (2011) The crystal structure of stichtite, re-examination of barbertonite, and the nature of polytypism in MgCr hydrotalrefs. American Mineralogist, 96, 179187.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R.., Kameda, T and Colombo, F. (2012) Nomenclature of the hydrotalref supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Otruba, G. (1972) Hochstetter, Carl Christian. in. Neue Deutsche Biographie, 9, 293 f. [Online version, Historische Kommission bei der Bayerischen Akademie der Wissenschaften (editors) https://www. deutsche-biographie.de/gnd136203078.html].Google Scholar
Stanimirova, T (2001) Hydrotalref polytypes from Snarum, Norway. Annual of the University of Sofia, Faculty of Geology, 94, 7380.Google Scholar
Zhitova, E.S., Yakovenchuk, V.N., Krivovichev, S.V., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G. Yu. (2010) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg,Al-disordered quintinite-2H. Mineralogical Magazine, 74, 841848.CrossRefGoogle Scholar
Zhitova, E.S. (2013) Crystal Chemistry of Natural Layered Double Hydroxides., Unpublished PhD thesis, Saint Petersburg State University, Russi 26.pp.Google Scholar
Zhitova, E.S., Krivovichev, S.V., Yakovenchuk, V.N. and Pekov, I.V. (2015) Crystal chemistry of natural Mg-Al—CO3 layered double hydroxides with variable interlayer spacing. Euroclay Edinburgh 2015, Edinburgh, United Kingdom, 5-10 July, 2015 [Abstract].Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The creation of neotypes for hydrotalcite
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The creation of neotypes for hydrotalcite
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The creation of neotypes for hydrotalcite
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *