Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-30T23:46:59.528Z Has data issue: false hasContentIssue false

Calcioancylite-(La), (La,Ca)2(CO3)2(OH,H2O)2, a new member of the ancylite group from Gejiu nepheline syenite, Yunnan Province, China

Published online by Cambridge University Press:  19 April 2023

Yanjuan Wang
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China Department of Geosciences, University of Padova, Padova 35131, Italy
Xiangping Gu
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Guochen Dong*
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Zengqian Hou
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Fabrizio Nestola
Department of Geosciences, University of Padova, Padova 35131, Italy
Zhusen Yang
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Guang Fan
Beijing Research Institute of Uranium Geology, Beijing 100029, China
Yufei Wang
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Kai Qu
Tianjin Center, China Geological Survey, Tianjin 300170, China School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Corresponding author: Guochen Dong; Email:


Calcioancylite-(La), ideally (La,Ca)2(CO3)2(OH,H2O)2, has been discovered from nepheline syenite of the Gejiu alkaline complex in the Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, China. The mineral occurs as aggregates of subhedral grains, and the size of single crystals varies between 5–20 μm. Calcioancylite-(La) is colourless to pale pinkish grey and has transparent to translucent lustre. It is brittle with a Mohs hardness of 4. The calculated density is 4.324 g/cm3. The mineral is biaxial (−), with α =1.662, β = 1.730, γ = 1.771, 2Vmeas. = 70°(1) and 2Vcalc. = 73°. Electron microprobe analysis for holotype material yielded an empirical formula of (La0.58Ce0.55Pr0.14Nd0.10Ca0.39Sr0.20K0.04)Σ2.00(CO3)2[(OH)1.25F0.06⋅0.69H2O]Σ2.00. Calcioancylite-(La) is orthorhombic, with space group Pmcn, a = 5.0253(3) Å, b = 8.5152(6) Å, c = 7.2717(6) Å, V = 311.17(4) Å3 and Z = 2. By using single-crystal X-ray diffraction, the crystal structure has been determined and refined to a final R1 = 0.0652 on the basis of 347 independent reflections (I > 2σ). The seven strongest powder X-ray diffraction lines [d in Å (I) (hkl)] are: 2.334 (100) (013), 2.970 (80) (121), 4.334 (75) (110), 3.678 (68) (111), 2.517 (55) (200), 2.647 (47) (031) and 2.077 (44) (221). Calcioancylite-(La) is the La-analogue of calcioancylite-(Ce) and is a new member of ancylite-group minerals. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2021-090).

Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Mihoko Hoshino


Bayliss, P. and Levinson, A.A. (1988) A system of nomenclature for rare-earth mineral species: revision and extension. American Mineralogist, 73, 422423.Google Scholar
Belovitskaya, Y.V., Pekov, I.V., Gobechiya, E.R. and Kabalov, Y.K. (2013) Refinement of the crystal structure of calcioancylite-(Ce) by the Rietveld method. Crystallography Reports, 58, 216219.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1977) Predicting bond lengths in inorganic crystals. Acta Crystallographica, B33, 13051310.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bulakh, A.G., Le Bas, M.J., Wall, F. and Zaitsev, A.N. (1998) Ancylite-bearing carbonatite of the Seblyavr massif, Kola peninsula, Russia. Neues Jahrbuch für Mineralogie Monatshefte, 1998, 171192.Google Scholar
Chakhmouradian, A.R., Cooper, M.A., Reguir, E.P. and Moore, M.A. (2017) Carbocernaite from bear lodge, Wyoming: crystal chemistry, paragenesis, and rare-earth fractionation on a microscale. American Mineralogist, 102, 13401352.CrossRefGoogle Scholar
Dal Negro, A., Rossi, G. and Tazzoli, V. (1975) The crystal structure of ancylite, (RE)x(Ca,Sr)2-x(CO3)2(OH)x⋅(2-x)H2O. American Mineralogist, 60, 280284.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Frost, R. L. and Dickfos, M.J. (2007) Raman spectroscopy of halogen-containing carbonates. Journal of Raman Spectroscopy, 38, 15161522.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Huang, W.L., Xu, J.F., Chen, J.L., Huang, F., Pi, Q.H. and Li, Z.L. (2018) Geochronology, geochemistry and genesis of the Baiyunshan alkalic rocks in Gejiu area of southeastern Yunnan Province. Acta Petrologica et Mineralogica, 37, 716732 [in Chinese with English abstract].Google Scholar
Larsen, A.O. and Gault, R.A. (2002) Calcio-ancylite-(Ce) from syenite pegmatite at Tvedalen, Oslo Region, Norway. Neues Jahrbuch für Mineralogie-Monatshefte, 2002, 411423.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2004) LMGP Suite of Programs for the Interpretation of X-ray Experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, France.Google Scholar
Levinson, A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152.Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Takeuchi, K., Nakai, I. and Terada, Y. (2000) Kozoite-(Nd), Nd(CO3)(OH), a new mineral in an alkali olivine basalt from Hizen-cho, Saga Prefecture, Japan. American Mineralogist, 85, 10761081.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Iwano, S., Hamasaki, K. and Yukinori, I. (2003) Kozoite-(La), La(CO3)(OH), a new mineral from Mitsukoshi, Hizen-cho, Saga Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 98, 137141.CrossRefGoogle Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1990) Calcio-ancylite-(Nd), a new REE-carbonate from Baveno, Italy. European Journal of Mineralogy, 2, 413418.CrossRefGoogle Scholar
Pasero, M. (2023) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). Scholar
Pekov, I.V., Petersen, O.V. and Voloshin, A.V. (1997) Calcio-ancylite-(Ce) from Ilímaussaq and Narssârssuk, Greenland, Kola peninsula and Polar Urals, Russia; ancylite-(Ce)-calcio-ancylite-(Ce) an isomorphous series. Neues Jahrbuch für Mineralogie, Abhandlungen, 171, 309322.CrossRefGoogle Scholar
Rigaku Oxford Diffraction. (2015) CrysAlisPro Software system, version Rigaku Corporation.Google Scholar
Sarp, H. and Bertrand, J. (1985) Gysinite, Pb(Nd,La)(CO3)2(OH)⋅H2O, a new lead, rare-earth carbonate from Shinkolobwe, Shaba, Zaïre and its relationship to ancylite. American Mineralogist, 70, 13141317.Google Scholar
Sheldrick, G.M. (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google ScholarPubMed
Szymanski, J.T. and Chao, G.Y. (1986) The crystal structure of monoclinic ancylite. American Crystallographic Association, Annual Meeting, Hamilton, Abstract Paper PA2.Google Scholar
Wang, Y., Dong, G., Santosh, M., Liu, C., Chen, W., Liang, J. and Zhang, Y. (2021) Alkaline magmatism on Neo-Tethyan extensional domains: Evidences from the Gejiu complex in Yunnan, China. Geological Journal, 56, 43314348.CrossRefGoogle Scholar
Wang, Y., Gu, X., Dong, G., Hou, Z., Yang, Z., Fan, G., Wang, Y., Tang, C., Cheng, Y. and Qu, K. (2022) Calcioancylite-(La), IMA 2021–090. CNMNC Newsletter 65. Mineralogical Magazine, 86, 354358.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography. Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar
Zhang, Y., Huang, Z.L., Luo, T.Y., Qian, Z.K., Zhang, J.W. and Sun, J.B. (2013) The geochemistry and SIMS U-Pb zircon dating of the Jiasha gabbric-monzonitic intrusion in Gejiu district, Yunnan Province. Geochimica, 42, 523543 [in Chinese with English abstract].Google Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material 1

Download Wang et al. supplementary material(File)
File 13.4 KB
Supplementary material: PDF

Wang et al. supplementary material

Wang et al. supplementary material 2

Download Wang et al. supplementary material(PDF)
PDF 103.4 KB