Hostname: page-component-797576ffbb-cx6qr Total loading time: 0 Render date: 2023-12-06T13:43:15.283Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Ba–Cu ordering in bariopharmacoalumite-Q2a2b2c from Cap Garonne, France

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
CSIRO Mineral Resources, Box 312 Clayton South, Victoria 3169, Australia
W. G. Mumme
CSIRO Mineral Resources, Box 312 Clayton South, Victoria 3169, Australia
J. R. Price
Australian Synchrotron. 800 Blackburn Road, Clayton, Victoria 3168, Australia
S. J. Mills
Geosciences, Museum Victoria. GPO Box 666, Melbourne, Victoria 3001, Australia
C. M. Macrae
CSIRO Mineral Resources, Box 312 Clayton South, Victoria 3169, Australia
G. Favreau
421 Avenue Jean Monnet, 13090 Aix-en-Provence, France


Bariopharmacoalumite-Q2a2b2c, Ba0.5(Cu,ZnO)0.1H0.6[Al4(OH)4(As0.9Al0.1O4)3]·5.5H2O, from the south mine of the old copper mine at Cap Garonne, France, has a 2 × 2 × 2 I-centred tetragonal superstructure of the basic pharmacosiderite-type structure. Cell parameters are a = 15.405(2) Å and c = 15.553(3) Å. The structure was determined and refined in I2m to R1= 0.057 for 2697 reflections with I > 2σ(I), using synchrotron X-ray data on a twinned crystal. The origin of the superlattice cell doubling was determined to be due predominantly to the ordering of Ba atoms in half of the [0 0 1] channels, centred at (0, 0, 0) and (½, ½, 0). The other channels, centred at (½, 0, 0) and (0, ½, 0), were found to be occupied by corner-connected chains of Cu/Zn-centred square planar units.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Baur, W.H. and Fischer, R.X. (2013) Gaps in cubic closest packing: from MgO via spinel to the pharmacosiderite crystal structure type. Mineralogy and Petrology, 107, 153162.CrossRefGoogle Scholar
Behrens, E.A. and Clearfield, A. (1997) Titanium silicates M 3HTi4O4(SiO4)3·4H2O (M = Na+, K+), with threedimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions. Microporous Materials, 11, 6575.CrossRefGoogle Scholar
Bialek, R. and Gramlich, V. (1992) The superstructure of K3HGe7O16·4H2O. Zeitschrift für Kristallographie, 198, 6777.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brock, S.L. and Kauzlarich, S.M. (1994) A2Zn3As2O2 (A = Ba, Sr): a rare example of square planar zinc. Inorganic Chemistry, 33, 24912492.CrossRefGoogle Scholar
Bruker, (2001) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Buerger, M.J., Dollase, W.A. and Garaycochea-Wittke, I. (1967) The structure and composition of the mineral pharmacosiderite. Zeitschrift für Kristallographie, 125, 92108.CrossRefGoogle Scholar
Cooper, R.I., Gould, R.O., Parsons, S. and Watkin, D.J. (2002) The derivation of non-merohedral twin laws during replacement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program CRYSTALS. Journal of Applied Crystallography, 35, 168174.CrossRefGoogle Scholar
Dadachov, M.S. and Harrison, W.T. (1997) Synthesis and crystal structure of Na4[(TiO)4(SiO4)3]·6H2O, a rhombohedrally distorted sodium titanium silicate pharmacosiderite analogue. Journal of Solid State Chemistry, 134, 409415.CrossRefGoogle Scholar
David, W.I.F., Harrison, W.T.A., Gunn, J.M.F., Moze, O., Soper, A.K., Day, P., Jorgensen, J.D., Hinks, D.G., Beno, M.A., Soderholm, L., Capone, D.W., Schuller, I.K., Segre, C.U., Zhang, K. and Grace, J.D. (1987) Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7–x . Nature, 327, 310312.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Feng, S. and Greenblatt, M. (1992) Preparation, characterization and ionic conductivity of novel crystalline, microporous germanates, M3HGe7O16 ·xH2O, M = NH4 +, Li+ , K+, Rb+, Cs+ ; x = 4–6. Chemistry of Materials, 4, 462468.CrossRefGoogle Scholar
Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Durovic, S., Jagodzinski, H., Krishna, P., De Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K. and Abrahams, S.C. (1984) Nomenclature of polytype structures: Report of the International Union of Crystallography Ad- Hoc Committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallographica, A40, 399404.CrossRefGoogle Scholar
Hager, S.L., Leverett, P., Williams, P.A., Mills, S.J., Hibbs, D.E., Raudsepp, M., Kampf, A.R. and Birch, W.D. (2010) The single-crystal X-ray structures of bariopharmacosiderite-C, bariopharmacosiderite-Q and natropharmacosiderite. The Canadian Mineralogist, 48, 14771485.CrossRefGoogle Scholar
Hausmann, J.F.L. (1813) Pharmakosiderit. Pp. 1065–1067 in: Handbuch der Mineralogie, Vol. 3. Göttingen, Germany.Google Scholar
Hestermann, K. and Hoppe, R. (1969) Die Kristallstruktur von KCuO2, RbCuO2 und CsCuO2 . Zeitschrift für Anorganische und Allgemeine Chemie, 367, 249255.CrossRefGoogle Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Mills, S.J., Hager, S.L., Leverett, P., Williams, P.A. and Raudsep, M. (2010a) The structure of H3O+- exchanged pharmacosiderite. Mineralogical Magazine, 74, 487492.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Williams, P.A., Leverett, P., Poirier, G., Raudsepp, M. and Francis, C.A. (2010b) Hydroniumpharmacosiderite, a new member of the pharmacosiderite supergroup from Cornwall, UK: structure and description. Mineralogical Magazine, 74, 863869.CrossRefGoogle Scholar
Mills, S.J., Rumsey, M.S., Favreau, G., Raudsepp, M. and Dini, M. (2011) Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile. Mineralogical Magazine, 75, 135144.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., McDonald, A.M., Favreau, G. and Chiappero, P.-J. (2012) Forětite, a new secondary arsenate mineral from the Cap Garonne mine, France. Mineralogical Magazine, 76, 769775.CrossRefGoogle Scholar
Mutter, G., Eysel, W., Greis, O. and Schmetzer, K. (1984) Crystal chemistry and ion-exchanged pharmacosiderites. Neues Jahrbuch für Mineralogie, Monatshafte, 1984, 183192.Google Scholar
Nenoff, T.M., Harrison, W.T.A. and Stucky, G.D. (1994) Na3Hx(H2PO4)x[(GeO)4(GeO4)3]·4H2O: a rhombohedrally-distorted germanium pharmacosiderite analog with anion/cation exchange capabilities. Chemistry of Materials, 6, 525530.CrossRefGoogle Scholar
Roberts, M.A. and Fitch, A.N. (1991) The crystal structures of Ag4Ge7O16·6D2O and Na3(ND4)Ge7O16·6D2O refined from high resolution synchrotron radiation and neutron powder diffraction data. Journal of Physics and Chemistry of Solids, 52, 12091218.CrossRefGoogle Scholar
Rumsey, M.S., Mills, S.J. and Spratt, J. (2010) Natropharmacoalumite, NaAl4[(OH)4(AsO4)3]·4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineralogical Magazine, 74, 929936.CrossRefGoogle Scholar
Sarp, H. and Chiappero, P.-J. (1992) Deloryite, Cu4(UO2)(MoO4)2(OH)6, a new mineral from Cap Garonne mine near Le Pradet, Var, France. Neues Jahrbuch für Mineralogie, Monatshefte, 1992, 5864.Google Scholar
Sarp, H., Chiappero, P.-J. and Favreau, G. (1994) Baryum-zinc alumopharmacosiderite de la mine de Cap Garonne (Var, France). Archives des Sciences de Geneve, 47, 4550.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shin, J., Bhange, D.S., Camblor, M.A. and Hong, S.B. (2011) Synthesis and structural characterization of aluminogermanate pharmacosiderites with different crystal symmetries. Microporous and Mesoporous Materials, 139, 148157.CrossRefGoogle Scholar
Tripathi, A., Medvedev, D.G., Delgado, J. and Clearfield, A. (2004) Optimising Cs-exchange in titanosilicate with the mineral pharmacosiderite topology; framework substitution of Nb and Ge. Journal of Solid State Chemistry, 177, 29032915.CrossRefGoogle Scholar
Yakovenchuk, V.N., Nikolaev, A.P., Selivanova, E.A., Pakhomovsky, Y.A., Korchak, J.A., Spiridonova, D.V., Zalkind, O.A. and Krivovichev, S.V. (2009) Ivanyukite-Na-T, ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu: New microporous titanosilicates from the Khibiny massif (Kola Peninsula, Russia) and crystal structure of ivanyukite-Na-T. American Mineralogist, 94, 14501458.CrossRefGoogle Scholar
Zemann, J. (1948) Formel und Struktur des pharmakosiderites. Tschermaks Mineralogische und Petrographische Mitteilungen, Third Series, 1, 113.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material

Table D1

Download Grey et al. supplementary material(File)
File 65 KB
Supplementary material: File

Grey et al. supplementary material

Table D2

Download Grey et al. supplementary material(File)
File 142 KB