Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.305 Render date: 2022-10-02T01:39:39.138Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Armellinoite-(Ce), Ca4Ce4+(AsO4)4⋅H2O, a new mineral species isostructural with pottsite, (Pb3Bi)Bi(VO4)4⋅H2O

Published online by Cambridge University Press:  13 December 2021

Fernando Cámara*
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Luigi Mangiagalli 34, I-20133Milano, Italy
Marco E. Ciriotti
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Torino, Italy Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, I-10125Torino, Italy
Uwe Kolitsch
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010Wien, Austria Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, A-1090Wien, Austria
Ferdinando Bosi
Dipartimento di Scienze della Terra, Università Sapienza, piazzale Aldo Moro 5, I-00185Roma, Italy CNR – Istituto di Geoscienze e Georisorse, UOS Roma, I-00185, Rome, Italy
Erica Bittarello
Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, I-10125Torino, Italy SpectraLab s.r.l., Academic spin-off of the University of Turin, via Valperga Caluso 35, I-10125Torino, Italy
Piero Brizio
Associazione Micromineralogica Italiana, via Guido Reni 218 C, I-10137Torino, Italy
Pietro Vignola
CNR-Istituto di Geologia Ambientale e Geoingegneria, via Mario Bianco 9, I-20131, Milano, Italy
Günter Blaß
Merzbachstraße 6, D-52249Eschweiler, Germany
*Author for correspondence: Fernando Cámara,


Armellinoite-(Ce), ideally Ca4Ce4+(AsO4)4⋅H2O, is a new mineral discovered in Fe–Mn ore in metaquartzites of the Montaldo mine, Corsaglia Valley, Cuneo Province, Piedmont, Italy. It occurs as very small and rare, pale yellow to brown–yellow pseudo-octahedral translucent crystals hosted by a matrix of quartz, hematite, cryptomelane/hollandite, tilasite, muscovite, braunite and montmorillonite. The mineral is translucent, with white streak and has a resinous to vitreous lustre. It is brittle with irregular fracture and fair cleavage parallel to {110} and {100}. Estimated Mohs hardness is ~3–3.5. Calculated density is 4.29 g⋅cm–3. Armellinote-(Ce) is uniaxial (–), ω = 1.795(5), ɛ = 1.765(5) (white light), non-pleochroic and non-fluorescent. Chemical point analyses by WDS-EPMA yielded the empirical formula (based on 17 O+F anions): A(Ca3.89Th0.08Sr0.02La0.03)Σ4.02B(Ce4+0.76Nd0.13Y0.08Gd0.03Sm0.02Pr0.01Dy0.01Ho0.01)Σ1.05[(As4.00P0.01)Σ4.01O4]4⋅(H2O0.85F0.15)Σ2.00. The presence of H2O was confirmed by Raman spectroscopy. The mineral is tetragonal, I41/a, with single-crystal unit-cell parameters a = 10.749(2), c = 12.030(2) Å and V = 1390.0(6) Å3, with Z = 4. The eight strongest X-ray powder diffraction lines are [d Å (Irel; hkl)]: 7.983 (36; 101), 4.443 (23; 2̄11), 2.957 (100; 3̄12), 2.398 (14; 420), 1.875 (22; 424, 325), 1.728 (19; 3̄16), 1.612 (13; 613) and 1.475 (26; 712, 552). The crystal structure (R1 = 0.0284 for 1275 unique reflections) has isolated TO4 (T = As5+) tetrahedra that link Ca2+- or Ce4+-centred polyhedra via common oxygen ligands to form 2D blocks or double-layered (DL) structural units parallel to (001). Armellinoite-(Ce) is isostructural with pottsite, ideally (Pb3Bi)Bi(VO4)4⋅H2O, and closely related to a larger number of anhydrous synthetic compounds. The mineral is named after the mineral collector Gianluca Armellino (b. 1962), who collected the discovery sample.

Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Anthony R Kampf


Balić-Žunić, T. (2017) The crystal structure of the new mineral dyrnaesite-(La), Na8CeIVREE2(PO4)6. Mineralogical Magazine, 81, 199208.CrossRefGoogle Scholar
Barelli, V. (1835) Cenni di statistica mineralogica degli Stati di S.M. il Re di Sardegna, ovvero Catalogo ragionato della raccolta formatasi presso l'Azienda Generale dell'Interno. Tip. Fodratti, Ed., Torino, 686 pp. [284285] [in Italian].Google Scholar
Cabella, R., Gaggero, L. and Lucchetti, G. (1992) Hollandite-cryptomelane and braunite in Mn-ores from upper Jurassic meta-arenites and marbles (Internal Briançonnais, Maritime Alps). Atti dell'Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze fisiche matematiche e naturali, 9 (3), 3341.CrossRefGoogle Scholar
Cabella, R., Cortesogno, L., Gaggero, L. and Lucchetti, G. (1994) Clinopyroxenes through the blueschist facies metamorphism of the Ligurian Alps: composition variability and miscibility gaps. Atti Ticinensi Scienze Terra, serie Speciale, 1, 5566.Google Scholar
Cabella, R., Lucchetti, G. and Marescotti, P. (1995) Sr-rich hollandite and cryptomelane in braunite-ores of Maritime Alps and Eastern Liguria (Italy). Neues Jahrbuch für Mineralogie, Monatshefte, 1995, 395407.Google Scholar
Cabella, R., Lucchetti, G. and Marescotti, P. (1999) Occurrence of LREE- and Y-arsenates from a Fe-Mn deposit, Ligurian Briançonnais Domain, Maritime Alps, Italy. The Canadian Mineralogist, 37, 961972.Google Scholar
Cadoni, M., Ciriotti, M.E. and Ferraris, G. (2011) Wakefieldite-(Y) from Montaldo di Mondovì (Italy): new data and crystal structure. Rendiconti Lincei, 22, 307314.CrossRefGoogle Scholar
Cámara, F., Biagioni, C., Ciriotti, M.E., Bosi, F., Kolitsch, U., Paar, W.H., Blass, G. and Bittarello, E. (2017) Piccoliite, IMA2017-016. CNMNC Newsletter No. 37, June 2017, page 741. Mineralogical Magazine, 81, 737742.Google Scholar
Cámara, F., Ciriotti, M.E., Kolitsch, U., Bosi, F., Bittarello, E., Brizio, P., Vignola, P. and Blass, G. (2018) Armellinoite-(Ce), IMA2018-094. CNMNC Newsletter No. 46, December 2018, page 1374. Mineralogical Magazine, 82, 13691379.Google Scholar
Conti, M. (1873) Miniera di ferro ossidulato manganesifero di Montaldo di Mondovì: relazione tecnica sull'esercizio del secondo semestre 1872. Tipografia Botta, Torino, Italy, 14 pp. [in Italian].Google Scholar
Dahale, N.D., Keskar, M. and Singh Mudher, K. (2006) Structural and thermal studies on Na2Th(MoO4)3, Na2Pu(MoO4)3, Na4Th(MoO4)4 and Na4Pu(MoO4)4. Journal of Alloys and Compounds, 415, 244250.CrossRefGoogle Scholar
Dalla Giovanna, G. and Vanossi, M.(1991) Le Unità piemontesi e brianzonesi tra le valli del Vermegnana e del Casotto. Pp. 163185 in: Guide Geologiche Regionali, Alpi Liguri. Società Geologica Italiana (a cura della), BE-Ma Editrice, Rome, Italy [in Italian].Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. and Nénert, G. (2014) The HighScore suite. Powder Diffraction, 29(S2), S13S18.CrossRefGoogle Scholar
Frost, R.L., Henry, D.A., Weier, M.L. and Martens, W. (2006) Raman spectroscopy of three polymorphs of BiVO4: Clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37, 722732.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen: metalloids and post-transition metals. Acta Crystallographica, B74, 6378.Google Scholar
Giai, M. (2020) Caratterizzazione mineralogica della miniera di Fe-Mn di Montaldo, Val Corsaglia, (Montaldo di Mondovì, Cuneo, Alpi Liguri). Master Thesis, Dipartimento di Scienze della Terra, Università di Torino, Italy, 1147 pp [in Italian].Google Scholar
Graham, A.R. (1955) Cerianite CeO2: a new rare-earth oxide mineral. American Mineralogist, 40, 560564.Google Scholar
Guagliardi, A., Moliterni, A.G.G., Polidori, G. and Spagna, R. (1999) SIR97: a new tool for crystal structure determination and refinement. Journal of Applied Crystallograllography, 32, 115119.Google Scholar
Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2016) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 32. New minerals and nomenclature modifications approved in 2016. Mineralogical Magazine, 80, 915922.CrossRefGoogle Scholar
Holtstam, D., Grins, J. and Nysten, P. (2004) Håleniusite-(La) from the Bastnäs deposit, Västmanland, Sweden: a new REE oxyfluoride mineral species. The Canadian Mineralogist, 42, 10971103.CrossRefGoogle Scholar
Jervis, W.P. (1873) I tesori sotterranei dell'Italia: Regione delle Alpi. Tip. Ermanno Loescher, Torino, 1039 pp. [in Italian].Google Scholar
Klevtsova, R.F., Gaponenko, L.A., Glinskaya, L.A., Zolotova, E.S., Podberezskaya, N.V. and Klevtsov, P.V. (1979) Synthesis and crystal structure of double molybdates of sodium and zirconium. Kristallografiya, 24, 751756 [in Russian].Google Scholar
Kolitsch, U. (2008) The crystal structure of a new Ca-Na-Mn3+-arsenate from a small metamorphic Mn deposit in Italy. Geochimica and Cosmochimica Acta, 72, Special Supplement 12S, A487 [poster abstract 18th Annual V.M. Goldschmidt Conference, Vancouver, Canada, July 13–18, 2008].Google Scholar
Kolitsch, U., Ciriotti, M.E., Cadoni, M., Armellino, G., Piccoli, G.C., Ambrino, P., Blass, G., Odicino, G. and Ciuffardi, M. (2011) Montaldo di Mondovì - Minerali della miniera di manganese e ferro. Micro, 9, 421 [in Italian, with English, French and German abstracts].Google Scholar
Kolitsch, U., Ciriotti, M.E. and Blaß, G. (2013) Preliminary data on a new natural Ca-Ce4+-arsenate and its crystal structure. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 159, 75 [Poster abstract, MinPet 2013, September 19–23].Google Scholar
Kovrugin, V.M., Siidra, O.I., Zaitsev, A.N., Spratt, J., Shilovskikh, V., Agakhanov, A.A. and Turner, R.W. (2016) The crystal structure and composition of pottsite, (Pb3xBi4–2x)(VO4)4⋅H2O (0.8 < x < 1.0). European Journal of Mineralogy, 28, 137145.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86–748, Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Lazoryak, B.I. and Efremov, V.A. (1987) The double tungstates M4TR(MoO4)4. Krystallografiya, 32, 378384 [in Russian].Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mariani, P. and Scaini, G. (1978) I Minerali d'Italia. COGED, Ed., Milano, 574 pp. [in Italian].Google Scholar
Mastrangelo, F. and Natale, P. (1977) Testimonianze della metallogenesi legata alla trasgressione epiercinica del Brianzonese. Rendiconti della Società Italiana di Mineralogia e Petrologia, 33, 135148 [in Italian].Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21(5), 10731080.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature. American Mineralogist, 72, 10311042.Google Scholar
Ovanysian, S.M., Ishkakova, L.D., Efremov, V.A. and Trunov, V.K. (1988) Binary selenates of Na5–3xTR1+x(SeO4)4. Krystallografiya, 33, 6368 [in Russian].Google Scholar
Piana, F., Musso, A., Bertok, C., D'atri, A., Martire, L., Perotti, E., Varrone, D. and Martinotti, G. (2009) New data on post-Eocene tectonic evolution of the External Ligurian Briançonnais (Western Ligurian Alps). Italian Journal of Geosciences, 128(2), 353366.Google Scholar
Piccoli, G.C. (2001) Minerali delle Alpi Marittime e Cozie Provincia di Cuneo. Associazione Amici del Museo “F. Eusebio” – Alba, Ed., Alba, Italy, 366 pp. [in Italian].Google Scholar
Piccoli, G.C., Kolitsch, U., Blaß, G. and Ciriotti, M.E. (2007a) Berzeliite di Montaldo di Mondovì: prima segnalazione italiana. Micro, 5, 4954 [in Italian, with English, French and German abstracts].Google Scholar
Piccoli, G.C., Maletto, G., Bosio, P. and Lombardo, B. (2007b) Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo “F. Eusebio”, Alba, Italy, 607 pp. [in Italian].Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3175 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum, New York, USA.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rønsbo, J.G, Balić-Žunić, T. and Petersen, O.V. (2017) Dyrnaesite-(La) a new hyperagpaitic mineral from the Ilímaussaq alkaline complex, South Greenland. Mineralogical Magazine, 81, 103111.CrossRefGoogle Scholar
Schlüter, J., Malcherek, T. and Husdal, T.A. (2009) The new mineral stetindite, CeSiO4, a cerium end-member of the zircon group. Neues Jahrbuch für Mineralogie, Abhandlungen, 186, 195200.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sillén, L.G. and Sundvall, H. (1943) Double molybdates and tungstates of alkali metals with La or Bi. Arkiv för kemi, mineralogi och geologi, 17A(10), 118.Google Scholar
Sismonda, A. (1841a) Memoria sui terreni stratificati delle Alpi. Memorie della Reale Accademia delle Scienze di Torino, serie II, 3, 53 pp. [in Italian].Google Scholar
Sismonda, A. (1841b) Osservazioni geologiche sulla Alpi Marittime e Appennini Liguri. Memorie della Reale Accademia delle Scienze di Torino, serie II, 4, 54 pp. [in Italian].Google Scholar
Vanossi, M. (1980) Les unités géologiques des Alpes Maritimes entre l'Ellero et la mer Ligure: un aperçu schématique. Memorie di Scienze Geologiche, 34, 101142 [in French].Google Scholar
Vanossi, M., Cortesogno, L., Galbiati, B., Messiga, B., Piccardo, G.B. and Vannucci, R. (1986) Geologia delle Alpi Liguri, dati, problemi, ipotesi. Memorie della Società Geologica Italiana, 28, 575 [in Italian].Google Scholar
Williams, S.A. (1988) Pottsite, a new vanadate from Lander County, Nevada. Mineralogical Magazine, 52, 389390.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Volume C: Mathematical, physical and chemical tables. Kluwer Academic, Dordrecht, The Netherlands, 883 pp.Google Scholar
Supplementary material: File

Cámara et al. supplementary material

Cámara et al. supplementary material

Download Cámara et al. supplementary material(File)
File 133 KB

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Armellinoite-(Ce), Ca4Ce4+(AsO4)4⋅H2O, a new mineral species isostructural with pottsite, (Pb3Bi)Bi(VO4)4⋅H2O
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Armellinoite-(Ce), Ca4Ce4+(AsO4)4⋅H2O, a new mineral species isostructural with pottsite, (Pb3Bi)Bi(VO4)4⋅H2O
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Armellinoite-(Ce), Ca4Ce4+(AsO4)4⋅H2O, a new mineral species isostructural with pottsite, (Pb3Bi)Bi(VO4)4⋅H2O
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *