Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T14:59:19.218Z Has data issue: false hasContentIssue false

Wet-STEM Tomography: Principles, Potentialities and Limitations

Published online by Cambridge University Press:  26 February 2014

Karine Masenelli-Varlot*
Affiliation:
Université de Lyon, INSA-Lyon, MATEIS UMR5510, 7 avenue J. Capelle, 69621 Villeurbanne cedex, France
Annie Malchère
Affiliation:
Université de Lyon, INSA-Lyon, MATEIS UMR5510, 7 avenue J. Capelle, 69621 Villeurbanne cedex, France
José Ferreira
Affiliation:
Université de Lyon, INSA-Lyon, MATEIS UMR5510, 7 avenue J. Capelle, 69621 Villeurbanne cedex, France
Hamed Heidari Mezerji
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Sara Bals
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Cédric Messaoudi
Affiliation:
Institut Curie, Centre de Recherche, Centre Universitaire d’Orsay, Bât. 112, 91405 Orsay cedex, France INSERM U759, Centre Universitaire d’Orsay, Bât. 112, 91405 Orsay cedex, France
Sergio Marco Garrido
Affiliation:
Institut Curie, Centre de Recherche, Centre Universitaire d’Orsay, Bât. 112, 91405 Orsay cedex, France INSERM U759, Centre Universitaire d’Orsay, Bât. 112, 91405 Orsay cedex, France
*
Get access

Abstract

The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.Google Scholar
Bogner, A. (2006). Le mode d’imagerie wet-STEM: développement, optimisation et compréhension. Application aux mini-émulsions et latex. PhD thesis, INSA de Lyon, France. Available at http://theses.insa-lyon.fr/publication/2006ISAL0066/these.pdf (19/09/2013).Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P.H. & Gauthier, C. (2005). Wet-STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.CrossRefGoogle Scholar
Crowther, R.A., Derosier, D.J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc A 317, 319340.Google Scholar
Danilatos, G.D. (1993). Introduction to the ESEM instrument. Microsc Res Tech 25, 354361.Google Scholar
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nature Nanotechnology 6, 695704.Google Scholar
Donald, A.M. (2003). The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature Mater 2, 511516.Google Scholar
Fletcher, A.L., Thiel, B.L. & Donald, A.M. (1997). Amplification measurements of alternative imaging gases in environmental SEM. J Phys D: Appl Phys 30, 2249.CrossRefGoogle Scholar
Gauthier, C., Jornsanoh, P., Masenelli-Varlot, K. & Thollet, G. (2006). Montage pour effectuer de la tomographie électronique dans un microscope électronique à balayage et à pression contrôlée. FR Patent 06, 09708.Google Scholar
Goris, B., Roelandts, T., Batenburg, K.J., Heidari Mezerji, H. & Bals, S. (2013). Advanced reconstruction algorithms for electron tomography: from comparison to combination. Ultramicroscopy 127, 4047.CrossRefGoogle ScholarPubMed
Goris, B., Van Den Broek, W., Batenburg, K.J., Heidari Mezerji, H. & Bals, S. (2012). Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120130.CrossRefGoogle Scholar
Harauz, G. & Van Heel, M. (1986). Exact filters for general geometry three dimensional reconstruction. Optik 73, 146156.Google Scholar
Huang, W., Yibei, F., Chaoyang, W., Yunshu, X. & Zhishang, B. (2002). A study on radiation resistance of siloxane foam containing phenyl. Rad Phy Chem 64, 229233.CrossRefGoogle Scholar
Jornsanoh, P., Thollet, G., Ferreira, J., Masenelli-Varlot, K., Gauthier, C. & Bogner, A. (2011). Electron tomography combining ESEM and STEM: A new 3D imaging technique. Ultramicroscopy 111, 12471254.Google Scholar
Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H. & De Jong, K.P. (2000). Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phy Chem B 104, 93689370.Google Scholar
Kubis, A.J., Shiflet, G.J., Dunn, D.N. & Hull, R. (2004). Focused ion beam Tomography. Metallurgical Mater Trans A 35A, 19351943.CrossRefGoogle Scholar
Leary, R., Midgley, P.A. & Thomas, J.M. (2012). Recent advances in the application of electron tomography to materials chemistry. Acc Chem Res 45, 17821791.CrossRefGoogle ScholarPubMed
Maire, E., Buffiere, J.Y., Salvo, L., Blandin, J.J., Ludwig, W. & Letang, J.M. (2001). On the application of X-ray microtomography in the field of materials science. Adv Eng Mater 3, 539546.Google Scholar
Mancuso, J.J. (2012). Large volumes at high resolution using serial block face imaging in the SEM. Microsc Microanal 18(S2), 104105.Google Scholar
Martini, M., Roux, S., Montagna, M., Pansu, R., Julien, C., Tillement, O. & Perriat, P. (2010). How gold inclusions increase the rate of fluorescein energy homotransfer in silica beads. Chem Phy Lett 490, 7275.Google Scholar
Messaoudi, C., Aschman, N., Cunha, M., Oikawa, T., Sanchez Sorzano, C.O. & Marco, S. (2013). Three dimensional chemical mapping by EFTEM-TomoJ including improvement of SNR by PCA and ART reconstruction of volume by noise suppression. Microsc Microanal 28, 19.Google Scholar
Messaoudi, C., Boudier, T., Sanchez Sorzano, C.O. & Marco, S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288297.Google Scholar
Nelson, A.C. (1988). Scanning electron microscope for visualization of wet samples. US Patent 4,720,633.Google Scholar
Peckys, D.B. & De Jonge, N. (2011). Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Letters 11, 17331738.Google Scholar
Ribeiro Carrott, M.M.L., Estêvão, Candeias, Carrott, P.J.M. & Unger, K.K. (1999). Evaluation of the stability of pure silica MCM-41 toward water vapor. Langmuir 15, 88958901.CrossRefGoogle Scholar
Ring, E.A. & De Jonge, N. (2012). Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 10781084.CrossRefGoogle ScholarPubMed
Ruska, E. (1942). Beitrag zur übermikroskopischen Abbildingen bei Höheren Drucken. Kolloid-Zeitschrift 100, 212219.Google Scholar
Trewyn, B.G., Slowing, I., Giri, S., Chen, H.T. & Lin, V.S. (2007). Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40, 846853.Google Scholar
Weyland, M. (2002). Electron tomography of catalysts. Catalysis 21, 175183.Google Scholar
Zhao, X.S., Audsley, K. & Lu, G.Q. (1998). Irreversible change of pore structure of MCM-41 upon hydration at room temperature. J Phy Chem B 102, 41434146.Google Scholar