Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:03:57.888Z Has data issue: false hasContentIssue false

Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells

Published online by Cambridge University Press:  20 June 2014

Jianguo Wen*
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Nanoscience and Technology Division, 9700 South Cass Avenue, Argonne, IL 60439, USA
Dean J. Miller*
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Nanoscience and Technology Division, 9700 South Cass Avenue, Argonne, IL 60439, USA
Wei Chen
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, IL 60439, USA Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, IL 60637, USA
Tao Xu
Affiliation:
Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
Luping Yu
Affiliation:
Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
Seth B. Darling
Affiliation:
Argonne National Laboratory, Center for Nanoscale Materials, Nanoscience and Technology Division, 9700 South Cass Avenue, Argonne, IL 60439, USA Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, IL 60637, USA
Nestor J. Zaluzec
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Nanoscience and Technology Division, 9700 South Cass Avenue, Argonne, IL 60439, USA
*
*Corresponding author. jgwen@anl.gov; miller@anl.gov
*Corresponding author. jgwen@anl.gov; miller@anl.gov
Get access

Abstract

Traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/PC61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC61BM polymeric solar cells at multiple length scales and expands our understanding of optimal device performance providing insight for the design of even higher performance cells.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S. & Williams, S.P. (2010). Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22, 38393856.CrossRefGoogle ScholarPubMed
Brabec, C.J., Heeney, M., McCulloch, I. & Nelson, J. (2011). Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40, 11851199.CrossRefGoogle ScholarPubMed
Brady, M.A., Su, G.M. & Chabinyc, M.L. (2011). Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7, 1106511077.CrossRefGoogle Scholar
Chen, W., Xu, T., He, F., Wang, W., Wang, C., Strzalka, J., Liu, Y., Wen, J., Miller, D.J., Chen, J., Hong, K., Yu, L. & Darling, S.B. (2011). Hierarchical morphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett 11, 37073713.CrossRefGoogle Scholar
Chen, Y.-H., Lin, L.-Y., Lu, C.-W., Lin, F., Huang, Z.-Y., Lin, H.-W., Wang, P.-H., Liu, Y.-H., Wong, K.-T., Wen, J., Miller, D.J. & Darling, S.B. (2012). Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. J Am Chem Soc 134, 1361613623.CrossRefGoogle ScholarPubMed
Darling, S.B. & You, F. (2013). The case for organic photovoltaics. RSC Advances 3, 1763317648.CrossRefGoogle Scholar
DeLongchamp, D.M., Kline, R.J. & Herzing, A. (2012). Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy Environ Sci 5, 59805993.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.CrossRefGoogle Scholar
Giridharagopal, R. & Ginger, D.S. (2010). Characterizing morphology in bulk heterojunction organic photovoltaic systems. J Phys Chem Lett 1, 11601169.CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y. & Warta, W. (2011). Solar cell efficiency tables. Prog Photovolt Res Appl 19, 8492.CrossRefGoogle Scholar
Haider, M., Hartel, P., Müller, H., Uhlemann, S. & Zach, J. (2009). Current and future aberration correctors for the improvement of resolution in electron microscopy. Philos Trans A Math Phys Eng Sci 367, 36653682.Google ScholarPubMed
He, F. & Yu, L. (2011). How far can polymer solar cells go? In need of a synergistic approach. J Phys Chem Lett 2, 31023113.CrossRefGoogle Scholar
He, Z., Zhong, C., Huang, X., Wong, W., Wu, H., Chen, L., Su, S. & Cao, Y. (2011). Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23, 46364643.CrossRefGoogle ScholarPubMed
Herzing, A.A., Richter, L.J. & Anderson, I.M. (2010). 3D nanoscale characterization of thin-film organic photovoltaic device structures via spectroscopic contrast in the TEM 1. J Phys Chem C 114, 1750117508.CrossRefGoogle Scholar
Hoppe, H. & Sariciftci, N.S. (2006). Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16, 4561.CrossRefGoogle Scholar
Kabius, B., Hartel, P., Haider, M., Müller, H., Uhlemann, S., Loebau, U., Zach, J. & Rose, H. (2009). First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J Electron Microsc 58, 147155.CrossRefGoogle ScholarPubMed
Lee, J.K., Ma, W.L., Brabec, C.J., Yuen, J., Moon, J.S., Kim, J.Y., Lee, K., Bazan, G.C. & Heeger, A.J. (2008). Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130, 36193623.CrossRefGoogle ScholarPubMed
Li, G., Zhu, R. & Yang, Y. (2012). Polymer solar cells. Nat Photonics 6, 153161.CrossRefGoogle Scholar
Liang, Y., Xu, Z., Xia, J., Tsai, S., Wu, Y., Li, G., Ray, C. & Yu, L. (2010). For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22, E135E138.CrossRefGoogle ScholarPubMed
McNeill, C.R. (2012). Morphology of all-polymer solar cells. Energy Environ Sci 5, 56535667.CrossRefGoogle Scholar
Miller, D.J., Dahmen, U. & Stach, E.A. (2011). New opportunities for in situ science based on the TEAM platform. Microsc Microanal 17, 450451.CrossRefGoogle Scholar
Pearson, A.J., Boden, S.A., Bagnall, D.M., Lidzey, D.G. & Rodenburg, C. (2011). Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett 11, 42754281.CrossRefGoogle ScholarPubMed
Pfannmöller, M., Flügge, H., Benner, G., Wacker, I., Kowalsky, W. & Schröder, R.R. (2012). Visualizing photovoltaic nanostructures with high-resolution analytical electron microscopy reveals material phases in bulk heterojunctions. Synth Met 161, 25262533.CrossRefGoogle Scholar
Pfannmöller, M., Flügge, H., Benner, G., Wacker, I., Sommer, C., Hanselmann, M., Schmale, S., Schmidt, H., Hamprecht, F.A., Rabe, T., Kowalsky, W. & Schröder, R.R. (2011). Visualizing a homogeneous blend in bulk heterojunction polymer solar cells by analytical electron microscopy. Nano Lett 11, 30993107.CrossRefGoogle ScholarPubMed
Pines, D. (1999). Elementary Excitations in Solids: Lectures on Phonons, Electrons, and Plasmons. New York: Westview Press.Google Scholar
Pingree, L.S.C., Reid, O.G. & Ginger, D.S. (2009). Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells. Nano Lett 9, 29462952.CrossRefGoogle ScholarPubMed
Rose, H. & Wan, W. (2005). Aberration Correction in Electron Microscopy, 16–20 May 2005, Proceedings of the 2005 Particle Accelerator Conference, Tennessee, USA, pp. 44–48.Google Scholar
Ruderer, M.A. & Müller-Buschbaum, P. (2011). Morphology of polymer-based bulk heterojunction films for organic photovoltaics. Soft Matter 7, 54825493.CrossRefGoogle Scholar
Schindler, W., Wollgarten, M. & Fostiropoulos, K. (2012). Revealing nanoscale phase separation in small-molecule photovoltaic blends by plasmonic contrast in the TEM. Org Electron 13, 11001104.CrossRefGoogle Scholar
Wen, J.G., Miller, D.J., Zaluzec, N.J., Chen, W. & Darling, S.B. (2012). Hierarchical nanodomains in polymer-fullerene bulk heterojunction solar cells observed using Cc-corrected energy-filtered TEM. Microsc Microanal 18, 13361337.CrossRefGoogle Scholar
Wen, J.G., Miller, D.J., Zaluzec, N.J., Hiller, J.M. & Cook, R.E. (2013). Contribution of Cc-correction to high-resolution TEM at all energy loss regimes. Microsc Microanal 19, 594595.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Springer.CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J.C., Wudl, F. & Heeger, A.J. (1995). Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 17891791.CrossRefGoogle Scholar