Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T18:39:09.371Z Has data issue: false hasContentIssue false

Three-Dimensional Optical Sectioning by Scanning Confocal Electron Microscopy with a Stage-Scanning System

Published online by Cambridge University Press:  30 March 2010

Ayako Hashimoto*
Affiliation:
International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Masayuki Shimojo
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293, Japan
Kazutaka Mitsuishi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan Quantum Dot Research Center, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan
Masaki Takeguchi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan Advanced Nano-characterization Center, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan
*
Corresponding author. E-mail: Hashimoto.Ayako@nims.go.jp
Get access

Abstract

We evaluated the depth resolution of annular dark-field (ADF) scanning confocal electron microscopy (SCEM) with a stage-scanning system by observation of nanoparticles. ADF-SCEM is a three-dimensional (3D) imaging technique that we recently proposed. An ADF-SCEM instrument involves a pinhole aperture before a detector for rejecting electrons from the out-of-focal plane in a specimen and an annular aperture under the specimen for collecting only scattered electrons. The stage-scanning system enables us to directly obtain optical slice images perpendicular and parallel to an optical axis at a desired position. In particular, the parallel slices visualize the elongation of nanoparticles along the optical axis, which depends on the depth resolution. ADF-SCEM effectively reduced the elongation length of the nanoparticles sufficiently to demonstrate depth sectioning, in comparison with scanning transmission electron microscopy and bright-field SCEM. The experimentally obtained length was nearly equal to the theoretically estimated one from the probe size considering the experimental conditions. Furthermore, we applied this ADF-SCEM technique to analysis of the 3D position of catalytic nanoparticles on carbon nanostructures.

Type
Instrumentation and Software: Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci USA 103, 30443048.Google Scholar
Cosgriff, E.C., D'Alfonso, A.J., Allen, L.J., Findlay, S.D., Kirkland, A.I. & Nellist, P.D. (2008). Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part I: Elastic scattering. Ultramicroscopy 108, 15581566.Google Scholar
D'Alfonso, A.J., Cosgriff, E.C., Findlay, S.D., Behan, G., Kirkland, A.I., Nellist, P.D. & Allen, L.J. (2008). Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part II: Inelastic scattering. Ultramicroscopy 108, 15671578.CrossRefGoogle ScholarPubMed
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.CrossRefGoogle Scholar
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106, 086101.CrossRefGoogle Scholar
Hashimoto, A., Takeguchi, M., Shimojo, M., Mitsuishi, K., Tanaka, M. & Furuya, K. (2008). Development of stage-scanning system for confocal scanning transmission electron microscopy. e-J Surf Sci Nanotech 6, 111114.Google Scholar
Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F. & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nona-horns. Chem Phys Lett 309, 165170.CrossRefGoogle Scholar
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.CrossRefGoogle Scholar
Nellist, P.D., Cosgriff, E.C., Behan, G., Kirkland, A.I., D'Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2008). Three-dimensional imaging and analysis by optical sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscopes. Microsc Microanal 14, 104105.Google Scholar
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K. & Furuya, K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc 57, 123127.Google Scholar
Van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.-H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.CrossRefGoogle Scholar
Van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 10621068.CrossRefGoogle ScholarPubMed
Wang, S., Borisevich, A.Y., Rashkeev, S.N., Glazoff, M.V., Sohlberg, K., Pennycook, S.J. & Pantelides, S.T. (2004). Dopants adsorbed as single atoms prevent degradation of catalysts. Nat Mater 3, 143146.CrossRefGoogle ScholarPubMed
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.CrossRefGoogle Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58, 157165.Google Scholar
Yoshitake, T., Shimakawa, Y., Kuroshima, S., Kimura, H., Ichihashi, T., Kubo, Y., Kasuya, D., Takahashi, K., Kokai, F., Yudasaka, M. & Iijima, S. (2002). Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B 323, 124126.Google Scholar
Zaluzec, N.J. (2003). The scanning confocal electron microscope. Microsc Today 6, 812.Google Scholar
Zaluzec, N.J. (2007). Scanning confocal electron microscopy. Microsc Microanal 13(S2), 15601561 (CD-ROM).Google Scholar