Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:28:46.328Z Has data issue: false hasContentIssue false

Three-Dimensional Analysis of Carbon Nanotube Networks in Interconnects by Electron Tomography without Missing Wedge Artifacts

Published online by Cambridge University Press:  26 February 2010

Xiaoxing Ke*
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Sara Bals
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Daire Cott
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Thomas Hantschel
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Hugo Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Gustaaf Van Tendeloo
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
*
Corresponding author. E-mail: Xiaoxing.Ke@ua.ac.be
Get access

Abstract

The three-dimensional (3D) distribution of carbon nanotubes (CNTs) grown inside semiconductor contact holes is studied by electron tomography. The use of a specialized tomography holder results in an angular tilt range of ±90°, which means that the so-called “missing wedge” is absent. The transmission electron microscopy (TEM) sample for this purpose consists of a micropillar that is prepared by a dedicated procedure using the focused ion beam (FIB) but keeping the CNTs intact. The 3D results are combined with energy dispersive X-ray spectroscopy (EDS) to study the relation between the CNTs and the catalyst particles used during their growth. The reconstruction, based on the full range of tilt angles, is compared with a reconstruction where a missing wedge is present. This clearly illustates that the missing wedge will lead to an unreliable interpretation and will limit quantitative studies.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bals, S., Batenburg, K.J., Liang, D., Lebedev, O., Van Tendeloo, G., Aerts, A., Martens, J.A. & Kirschhock, C.E.A. (2009). Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J Am Chem Soc 131, 47694773.CrossRefGoogle ScholarPubMed
Bals, S., Batenburg, K.J., Verbeeck, J., Sijbers, J. & Van Tendeloo, G. (2007). Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett 7, 36693674.CrossRefGoogle Scholar
Bals, S., Van Tendeloo, G. & Kisielowski, C. (2006). A new approach for electron tomography: Annular dark-field transmission electron microscopy. Adv Mater 18, 892895.CrossRefGoogle Scholar
Batenburg, K.J., Bals, S., Sijbers, J., Kübel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A. & Van Tendeloo, G. (2009). 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109, 730734.CrossRefGoogle ScholarPubMed
Esconjaureguil, S., Whelan, C.M. & Maex, K. (2008). Patterning of metallic nanoparticles for the growth of carbon nanotubes. Nanotechnology 19, 135306. Available at http://www.iop.org/EJ/abstract/0957-4484/19/13/135306/.Google Scholar
Gass, M.H., Koziol, K.K.K., Windle, A.H. & Midgley, P.A. (2006). Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano Lett 6, 376379.CrossRefGoogle ScholarPubMed
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams. New York: Springer.CrossRefGoogle Scholar
Gilbert, P. (1972). Iterative methods for 3-dimensional reconstruction of an object from projections. J Theor Biol 36, 105117.CrossRefGoogle Scholar
Hantschel, T., Ryan, P., Palanne, S., Richard, O., Arstila, K., Verhulst, A.S., Bender, H., Ke, X. & Vandervorst, W. (2008). Nanoprober-based pick-and-place process for site-specific characterization of individual carbon nanotubes. In Materials Research Society Symposium Proceedings, pp. 1081-P17-04. San Francisco, CA: Materials Research Society.Google Scholar
Ingerly, D., Agraharam, S., Becher, D., Chikarmane, V., Fischer, K., Grover, R., Goodner, M., Haight, S., He, J., Ibrahim, T., Joshi, S., Kothari, H., Lee, K., Lin, Y., Litteken, C., Liu, H., Mays, E., Moon, P., Mule, T., Nolen, S., Patel, N., Pradhan, S., Robinson, J., Ramanarayanan, P., Sattiraju, S., Schroeder, T., Williams, S. & Yashar, P. (2008). Low-k interconnect stack with thick metal 9 redistribution layer and Cu die bump for 45nm high volume manufacturing. In Proceedings of the IEEE International Interconnect Technology Conference, pp. 216218. Burlingame, CA: IEEE Electron Devices Society.Google Scholar
Jarausch, K., Thomas, P., Leonard, D.N., Twesten, R. & Booth, C.R. (2009). Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326337.CrossRefGoogle ScholarPubMed
Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. (2007). Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 815.CrossRefGoogle ScholarPubMed
Ke, X., Bals, S., Romo-Negreira, A., Hantschel, T., Bender, H. & Van Tendeloo, G. (2009). TEM sample preparation by FIB for carbon nanotube interconnects. Ultramicroscopy 109, 13531359.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507513.CrossRefGoogle ScholarPubMed
Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhögl, W., Liebau, M., Unger, E. & Hönlein, W. (2002). Carbon nanotubes in interconnect applications. Microelectron Eng 64, 399408.CrossRefGoogle Scholar
Li, H., Srivastava, N., Mao, J.F., Yin, W.Y. & Banerjee, K. (2007). Carbon nanotube vias: A reality check. In 2007 IEEE International Electron Devices Meeting—IEDM '07, pp. 207210. Washington, DC: IEEE Electron Devices Society.CrossRefGoogle Scholar
Li, J., Ye, Q., Cassell, A., Ng, H.T., Stevens, R., Han, J. & Meyyappan, M. (2003). Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82, 24912493.CrossRefGoogle Scholar
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.CrossRefGoogle ScholarPubMed
Möbus, G., Doole, R.C. & Inkson, B.J. (2003). Spectroscopic electron tomography. Ultramicroscopy 96, 433451.CrossRefGoogle ScholarPubMed
Möbus, G. & Inkson, B.J. (2001). Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79, 13691371.CrossRefGoogle Scholar
Montoya, E. (2007). Focused ion beam: A way to prepare high quality TEM specimens. Ph.D. thesis, University of Antwerp.Google Scholar
Montoya, E., Bals, S., Rossell, M.D., Schryvers, D. & Van Tendeloo, G. (2007). Evaluation of top, angle, and side cleaned FIB samples for TEM analysis. Microsc Res Techniq 70, 10601071.CrossRefGoogle ScholarPubMed
Nihei, M., Kawabata, A. & Awano, Y. (2003). Direct diameter-controlled growth of multiwall carbon nanotubes on nickel-silicide layer. Jpn J Apply Phys 42, L721L723.CrossRefGoogle Scholar
Nihei, M., Kondo, D., Kawabata, A., Sato, S., Shioya, H., Sakaue, M., Iwai, T., Ohfuti, M. & Awano, Y. (2005). Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. In Proceedings of the IEEE 2005 International Interconnect Technology Conference, pp. 234236. Burlingame, CA: IEEE Electron Devices Society.Google Scholar
Romo-Negreira, A., Cott, D.J., Verhulst, A.S., Esconjauregui, S., Chiodarelli, N., Ek-Weis, J., Whelan, C.M., Groeseneken, G., Heyns, M.M., De Gendt, S. & Vereecken, P.M. (2008). Growth and integration of high-density CNT for BEOL interconnects. In Materials Research Society Symposium Proceedings, p. 1079-N06-01. San Francisco, CA: Materials Research Soiety.Google Scholar
Romo-Negreira, A., Richard, O., De Gendt, S., Maex, K., Heyns, M.M. & Vereecken, P.M. (2009). Selective growth of carbon nanotubes on silicon from electrodeposited nickel catalyst. Sci Adv Mater 1, 8692.CrossRefGoogle Scholar
Sato, S., Nihei, M., Mimura, A., Kawabata, A., Kondo, D., Shioya, H., Taisuke, W., Mishima, M., Ohfuti, M. & Awano, Y. (2006). Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. In Proceedings of the IEEE 2006 International Interconnect Technology Conference, pp. 230232. Burlingame, CA: IEEE Electron Devices Society.CrossRefGoogle Scholar
Srivastava, N., Joshi, R.V. & Banerjee, K. (2005). Carbon nanotube interconnects: Implications for performance, power dissipation and thermal management. In IEEE International Electron Devices Meeting (IEDM) 2005, Technical Digest, pp. 257260. Washington, DC: IEEE Electron Devices Society.Google Scholar
Steinlesberger, G., Engelhardt, M., Schindler, G., Steinhögl, W., Von Glasow, A., Mosig, K. & Bertagnolli, E. (2002). Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron Eng 64, 409416.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gornam, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Turner, S., Tavernier, S.M.F., Huyberechts, G., Biermans, E., Bals, S., Batenburg, K.J. & Van Tendeloo, G. (2009). Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution. J Nanopart Res; doi10.1007/s11051-009-9630-1. Available at http://www.springerlink.com/content/9125366866701j2m/.Google Scholar
Yaguchi, T., Konno, M., Kamino, T. & Watanabe, M. (2008). Observation of three-dimensional elemental distributions of a Si device using a 360 degrees-tilt FIB and the cold field-emission STEM system. Ultramicroscopy 108, 16031615.CrossRefGoogle ScholarPubMed
Zhang, C., Cott, D., Chiodarelli, N., Vereecken, P., Robertson, J. & Whelan, C.M. (2008). Growth of carbon nanotubes as horizontal interconnects. Phys Sta Sol (b) 245, 2308.CrossRefGoogle Scholar