Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T14:43:01.288Z Has data issue: false hasContentIssue false

Structural Heterogenity of Intraluminal Content of The Prostate: A Histochemical and Ultrastructural Study

Published online by Cambridge University Press:  16 March 2015

Paula Badea
Affiliation:
Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest R-050095, Romania National Institute of Public Health, Dr. Leonte 1-3, Bucharest R-050463, Romania
Amelia Petrescu
Affiliation:
Department of Pathology, “Prof. Dr. Theodor Burghele” Urology Clinical Hospital, Panduri 20, Bucharest R-011863, Romania
Lucia Moldovan
Affiliation:
Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, Bucharest R-060031, Romania
Otilia Zarnescu*
Affiliation:
Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest R-050095, Romania
*
*Corresponding author.otilia.zarnescu@bio.unibuc.ro
Get access

Abstract

Intraluminal contents of benign and malignant prostatic tissue are associated with varying forms of acellular structures. These include corpora amylacea, prostatic calculi, and prostatic crystalloids. There are relatively few microscopy studies about the characterization of intraluminal structures from benign and malignant prostatic glands and little is known about their chemical composition. In the present study, we used a combination of special histochemical methods, immunohistochemistry, and transmission electron microscopy to characterize intraluminal contents of benign and malignant prostate glands. The study was done on 33 radical prostatectomy and four transurethral resections of prostate specimens. Histochemical methods such as von Kossa, autometallography (AMG), as well as PSA immunohistochemistry and transmission electron microscopy were performed to characterize intraluminal contents of benign and malignant prostate glands. Von Kossa staining was observed in acellular structures, corpora amylacea, prostatic calculi, and calcified blood vessels. AMG staining was observed in the lumen of small glands, in the epithelium lining prostate glands, and corpora amylacea. PSA staining showed prostatic glands with both positive and negative corpora amylacea and epithelial cells. Ultrastructural observation revealed the presence of a variety of highly heterogeneous aggregates composed of fibrillar elements that were similar to those of amyloid.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christensen, M.M. (1996). Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride. Histochem J 28, 217225.CrossRefGoogle ScholarPubMed
Christian, J.D., Lamm, T.C., Morrow, J.F. & Bostwick, D.G. (2005). Corpora amylacea in adenocarcinoma of the prostate: Incidence and histology within needle core biopsies. Mod Pathol 18, 3639.CrossRefGoogle ScholarPubMed
Cross, P.A., Bartley, C.J. & McClure, J. (1992). Amyloid in prostatic corpora amylacea. J Clin Pathol 45, 894897.CrossRefGoogle ScholarPubMed
Danscher, G. (1984). Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry 81, 331335.CrossRefGoogle ScholarPubMed
Danscher, G. & Møller-Madsen, B. (1985). Silver amplification of mercury sulfide and selenide: A histochemical method for light and electron microscopic localization of mercury in tissue. J Histochem Cytochem 33, 219228.CrossRefGoogle ScholarPubMed
Danscher, G. & Stoltenberg, M. (2005). Zinc-specific autometallographic in vivo selenium methods: Tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53, 141153.CrossRefGoogle Scholar
Danscher, G., Stoltenberg, M. & Juhl, S. (1994). How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol Appl Neurobiol 20, 454467.CrossRefGoogle ScholarPubMed
Declercq, H., Van Der Vreken, N., De Maeyer, E., Verbeeck, R., Schacht, E., De Ridder, L. & Cornelissen, M. (2004). Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: Comparison of different isolation techniques and source. Biomaterials 25, 757768.CrossRefGoogle ScholarPubMed
Dessombz, A., Méria, P., Bazin, D., Foy, E., Rouzière, S., Weil, R. & Daudon, M. (2011). Revisiting the chemical diversity in prostatic calculi: A SEM and FT-IR investigation. Prog Urol 21, 940945.CrossRefGoogle ScholarPubMed
Drachenberg, C.B. & Papadimitriou, J.C. (1996). Prostatic corpora amylacea and crystalloids: Similarities and differences on ultrastructural and histochemical studies. J Submicrosc Cytol Pathol 28, 141150.Google ScholarPubMed
Dudley, A.C., Khan, Z.A., Shih, S.C., Kang, S.Y., Zwaans, B.M., Bischoff, J. & Klagsbrun, M. (2008). Calcification of multipotent prostate tumor endothelium. Cancer Cell 14, 201211.CrossRefGoogle ScholarPubMed
Epstein, J.I. & Eggleston, J.C. (1984). Immunohistochemical localization of prostate-specific acid phosphatase and prostate-specific antigen in stage A2 adenocarcinoma of the prostate: Prognostic implications. Hum Pathol 15, 853859.CrossRefGoogle ScholarPubMed
Epstein, J.I. & Netto, G.J. (2008). Biopsy Interpretation of the Prostate, 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Eykyn, S., Bultitude, M.I., Mayo, M.E. & Lloyd-Davies, R.W. (1974). Prostatic calculi as a source of recurrent bacteriuria in the male. Br J Urol 46, 527532.CrossRefGoogle ScholarPubMed
Ford, T.F., Butcher, D.N., Masters, J.R. & Parkinson, M.C. (1985). Immunocytochemical localisation of prostate-specific antigen: Specificity and application to clinical practice. Br J Urol 57, 5055.CrossRefGoogle ScholarPubMed
Fritz, G., Botelho, H.M., Morozova-Roche, L.A. & Gomes, C.M. (2010). Natural and amyloid self-assembly of S100 proteins: Structural basis of functional diversity. FEBS J 277, 45784590.CrossRefGoogle ScholarPubMed
Ghazizadeh, M., Kagawa, S., Maebayashi, K., Izumi, K. & Kurokawa, K. (1984). Prostatic origin of metastases: Immunoperoxidase localization of prostate-specific antigen. Urol Int 39, 912.CrossRefGoogle ScholarPubMed
Höhn, A. & Grune, T. (2013). Lipofuscin: Formation, effects and role of macroautophagy. Redox Biol 19, 140144.CrossRefGoogle Scholar
Holmes, E.J. (1977). Crystalloids of prostatic carcinoma: Relationship to Bence-Jones crystals. Cancer 39, 20732080.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hsu, T.H., Lin, S.Y., Lin, C.C. & Cheng, W.T. (2011). Preliminary feasibility study of FTIR microscopic mapping system for the rapid detection of the composited components of prostatic calculi. Urol Res 39, 165170.CrossRefGoogle ScholarPubMed
Jensen, P.E., Gardner, W.A. Jr. & Piserchia, P.V. (1980). Prostatic crystalloids: Association with adenocarcinoma. Prostate 1, 2530.CrossRefGoogle ScholarPubMed
Kato, H. & Ogawa, A. (1987). Large brushite stone in a dilated prostatic urethra. J Urol 138, 154155.CrossRefGoogle Scholar
Kiernan, J.A. (2008). Histological and Histochemical Methods: Theory and Practice, 4th ed. Oxfordshire: Scion Publishing Ltd.Google Scholar
Kodaka, T., Hirayama, A., Sano, T., Debari, K., Mayahara, M. & Nakamura, M. (2008). Fine structure and mineral components of primary calculi in some human prostates. J Electron Microsc 57, 133141.CrossRefGoogle ScholarPubMed
Magura, C.E. & Spector, M. (1979). Scanning electron microscopy of human prostatic corpora amylacea and corpora calculi, and prostatic calculi. Scan Electron Microsc 3, 713720.Google Scholar
Mahmoodi, M., Zhang, S., Salim, S., Hou, J.S. & Garcia, F.U. (2006). Lipofuscin pigment can be used as a prognostic marker in prostatic adenocarcinoma. Ann Diagn Pathol 10, 257262.CrossRefGoogle ScholarPubMed
Meares, E.M. (1974). Infection stones of prostate gland. Laboratory diagnosis and clinical management. Urology 4, 560566.CrossRefGoogle ScholarPubMed
Moore, R.A. (1936). Morphology of prostatic corpora amylacea and calculi. Arch Pathol 22, 2440.Google Scholar
Morales, E., Polo, L.A., Pastor, L.M., Santamaría, L., Calvo, A., Zuasti, A. & Ferrer, C. (2005). Characterization of corpora amylacea glycoconjugates in normal and hyperplastic glands of human prostate. J Mol Histol 36, 235242.CrossRefGoogle ScholarPubMed
Ohtsuki, Y., Furihata, M., Inoue, K., Iwata, J., Manabe, Y., Sonobe, H., Ochi, K., Seike, H., Hashimoto, H. & Terao, N. (1992). Immunohistochemical and ultrastructural studies of intraluminal crystalloids in human prostatic carcinomas. Virchows Arch A Pathol Anat Histopathol 421, 421425.CrossRefGoogle ScholarPubMed
Pretlow, T.G., Pretlow, T.P., Yang, B., Kaetzel, C.S., Delmoro, C.M., Kamis, S.M., Bodner, D.R., Kursh, E., Resnick, M.I. & Bradley, E.L. Jr. (1991). Tissue concentrations of prostate-specific antigen in prostatic carcinoma and benign prostatic hyperplasia. Int J Cancer 49, 645649.CrossRefGoogle ScholarPubMed
Ro, J.Y., Ayala, A.G., Ordonez, N.G., Cartwright, J. Jr. & Mackay, B. (1986). Intraluminal crystalloids in prostatic adenocarcinoma. Immunohistochemical, electron microscopic, and X-ray microanalytic studies. Cancer 57, 23972407.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Röcken, C., Linke, R.P. & Saeger, W. (1996). Corpora amylacea in the lung, prostate and uterus. A comparative and immunohistochemical study. Pathol Res Pract 192, 9981006.CrossRefGoogle ScholarPubMed
Sfanos, K.S., Wilson, B.A., De Marzo, A.M. & Isaacs, W.B. (2009). Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc Natl Acad Sci U S A 106, 34433448.CrossRefGoogle ScholarPubMed
Smith, V. (1965). Prostatic corpora amylacea and their calcification. Surg Forum 16, 501502.Google ScholarPubMed
Sorensen, M.B., Stoltenberg, M., Juhl, S., Danscher, G. & Ernst, E. (1997). Ultrastructural localization of zinc ions in the rat prostate: An autometallographic study. Prostate 31, 125130.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Stein, B.S., Vangore, S., Petersen, R.O. & Kendall, A.R. (1982). Immunoperoxidase localization of prostate-specific antigen. Am J Surg Pathol 6, 553557.CrossRefGoogle ScholarPubMed
Stein-Werblowky, R. (1978). On the etiology of cancer of the prostate. Eur Urol 4, 370373.CrossRefGoogle ScholarPubMed
Sutor, D.J. & Wooley, S.E. (1974). The crystalline composition of prostatic calculi. Br J Urol 46, 533535.CrossRefGoogle ScholarPubMed
Torres Ramirez, C., Aguilar Ruiz, J., Zuluaga Gomez, A., del Rio Samper, S. & de la Fuente Serr, A. (1981). Ultrastructure of primary or endogenous prostatic calculi. Scanning electron microscopic study. Arch Esp Urol 34, 1322.Google ScholarPubMed
Vartsky, D., Shilstein, S., Bercovich, A., Huszar, M., Breskin, A., Chechik, R., Korotinsky, S., Malnick, S.D. & Moriel, E. (2003). Prostatic zinc and prostate specific antigen: An experimental evaluation of their combined diagnostic value. J Urol 170, 22582262.CrossRefGoogle ScholarPubMed
Yanamandra, K., Alexeyev, O., Zamotin, V., Srivastava, V., Shchukarev, A., Brorsson, A.C., Tartaglia, G.G., Vogl, T., Kayed, R., Wingsle, G., Olsson, J., Dobson, C.M., Bergh, A., Elgh, F. & Morozova-Roche, L.A. (2009). Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS One 4, e5562.CrossRefGoogle ScholarPubMed
Zarnescu, O., Craciunescu, O. & Moldovan, L. (2010). Collagen-chondroitin sulphate-hydroxyapatite porous composites: A histochemical and electron microscopy approach. Microsc Microanal 16, 137142.CrossRefGoogle ScholarPubMed