Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T14:21:00.665Z Has data issue: false hasContentIssue false

Portable Apparatus for In Situ X-Ray Diffraction and Fluorescence Analyses of Artworks

Published online by Cambridge University Press:  27 May 2011

Myriam Eveno*
Affiliation:
Laboratoire du Centre de Recherche et de Restauration des Musées de France, C2RMF CNRS UMR 171, Palais du Louvre, 14 quai François Mitterrand, Paris 75001, France
Brice Moignard
Affiliation:
Laboratoire du Centre de Recherche et de Restauration des Musées de France, C2RMF CNRS UMR 171, Palais du Louvre, 14 quai François Mitterrand, Paris 75001, France
Jacques Castaing
Affiliation:
Laboratoire du Centre de Recherche et de Restauration des Musées de France, C2RMF CNRS UMR 171, Palais du Louvre, 14 quai François Mitterrand, Paris 75001, France
*
Corresponding author. E-mail: myriam.eveno@culture.gouv.fr
Get access

Abstract

A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5–20 μm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques.

Type
Analysis of Cultural Heritage Special Section
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chiari, G. (2008). Saving art in situ: A conservation scientist explains how borrowing gadgets from Mars rovers helps preserve culture on Earth. Nature 453, 159.CrossRefGoogle Scholar
Chiari, G. & Sarrazin, P. (2008). X-DUETTO: A new portable XRD:XRF device. In In Situ Monitoring of Monumental Surfaces, Tiano, P. & Pardini, C. (Eds.), pp. P451P456. Firenze, Italy: Edizione Firenze.Google Scholar
de Viguerie, L., Duran, A., Bouquillon, A., Sole, V.A., Castaing, J. & Walter, P. (2009a). Quantitative X-ray fluorescence analysis of an Egyptian faience pendant and comparison with PIXE. Anal Bioanal Chem 395, 22192225.CrossRefGoogle ScholarPubMed
de Viguerie, L., Sole, V.A. & Walter, P. (2009b). Multilayers quantitative X-ray fluorescence analysis applied to easel paintings. Anal Bioanal Chem 395, 20152020.CrossRefGoogle ScholarPubMed
Ducos, B., Mottin, B., Eveno, M., Laval, E. & Castaing, J. (2008). An icon of the Rembrandt myth: Recent discoveries on the Louvre's self-portrait at the easel. Rembrandt. Three faces of the master. Catalogue Exposition, Cincinnati Art Museum, March 8–May 21, 2008, pp. 73–91.Google Scholar
Duran, A. & Castaing, J. (2008). Observations with a portable X-ray diffraction system of a Pb-Sn-Sb-O yellow pigment in ceramics from the 15th–16th centuries. Macla 9, 8788.Google Scholar
Duran, A., Castaing, J. & Walter, P. (2010). X-ray diffraction studies of Pompeian wall paintings using synchrotron radiation and dedicated laboratory-made systems. Appl Phys A 99, 333340.CrossRefGoogle Scholar
Duran, A., Perez Rodriguez, J.L., Eespejo, T., Franquelo, M.L., Castaing, J. & Walter, P. (2009). Characterization of illuminated manuscripts by laboratory-made X-ray diffraction systems. Anal Bioanal Chem 395, 19972004.CrossRefGoogle Scholar
Eveno, M., Duran, A. & Castaing, J. (2010). A portable X-ray diffraction apparatus for in situ analyses of masters' paintings. Appl Phys A 100, 577584.CrossRefGoogle Scholar
Eveno, M., Duran, A., Ravaud, E., Laval, E. & Castaing, J. (2009). X-ray diffraction and fluorescence on the six Mantegna's paintings of the San Zeno altarpiece. In Andrea Mantegna: La Pala di San Zeno Studio e Conservazione, Ciatti, M. & Marini, P. (Eds.), pp. 285292. Firenze, Italy: Edizioni Firenze.Google Scholar
Gianoncelli, A., Castaing, J., Bouquillon, A., Polvorinos, A. & Walter, P. (2006). Quantitative elemental analysis of Della Robbia glazes with a portable XRF spectrometer and its comparison to PIXE methods. X-Ray Spectrom 35, 365369.CrossRefGoogle Scholar
Gianoncelli, A., Castaing, J., Ortega, L., Dooryhée, E., Eveno, M., Salomon, J., Bordet, P., Hodeau, J.-L. & Walter, P. (2008a). A portable XRF-XRD instrument for in-situ analysis of cultural heritage objects. In Conservation Science 2007, Townsend, J. (Ed.), pp. 189194. London: Archetype Publications.Google Scholar
Gianoncelli, A., Ortega, L., Castaing, J., Dooryhée, E., Salomon, J., Hodeau, J.-L., Walter, P. & Bordet, P. (2008b). Chemical compositions and crystal structures with a portable instrument for in situ analysis of cultural heritage objects. X-Ray Spectrom 37, 418423.CrossRefGoogle Scholar
Giessen, B. & Gordon, G.E. (1968). X-ray diffraction: New high-speed technique based on X-ray spectrography. Science 159, 973975.CrossRefGoogle ScholarPubMed
Hodeau, J.-L., Bordet, P., Gianoncelli, A., Ortega, L., Prat, A., Walter, P., Salomon, J. & Doorhyée, E. (2008). Système de filtrage chromatique et angulaire par diffraction des rayons X. Brevet CNRS 2007 no. 01169-01; WO 2008/125450 Int. Patent.Google Scholar
Nunez Casares, L., Martin Garcia, L., Gomez Moron, A., Castaing, J., Duran, A. & Polvorinos del Rio, A. (2009). La tecnologia unida a la restauracion para el studio de Retrato del poeta D. Luis de Gongora y Argote. Revista ph—Instituto Andaluz del Patrimonio Historico 72, 110125.Google Scholar
Potts, P.J. & West, M. (Eds.) (2008). Portable X-Ray Fluorescence Spectrometry: Capabilities for In Situ Analysis. Cambridge, UK: RCP Publishing.CrossRefGoogle Scholar
Rodriguez-Navarro, A.B. (2006). XRD2Scan: A new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallog 39, 905909.CrossRefGoogle Scholar
Uda, M. (2006). Patent filed on ED-XRD by Waseda University, Japan, date of publication 26-04-2006; European Patent 1 650 558 A1.Google Scholar
Uda, M., Ishizaki, A., Satoh, R., Okada, K., Nakajima, Y., Yamashita, D., Ohashi, K., Sakuraba, Y., Shimono, A. & Kojima, D. (2005). Portable X-ray diffractometer equipped with XRF for archaeometry. Nucl Instrum Meth B 239, 7784.CrossRefGoogle Scholar