Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T00:33:26.976Z Has data issue: false hasContentIssue false

Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques

Published online by Cambridge University Press:  19 January 2016

Fan Zhang*
Affiliation:
School of Mechanical and Material Engineering, Washington State University, 405 Spokane St., Pullman, WA 99163-2920, USA
Annie Ruimi
Affiliation:
School of Mechanical Engineering, Texas A&M University at Qatar Education City, Doha, Qatar
David P. Field
Affiliation:
School of Mechanical and Material Engineering, Washington State University, 405 Spokane St., Pullman, WA 99163-2920, USA
*
*Corresponding author. fan.zhang@wsu.edu
Get access

Abstract

Phase identification of multi-phase materials provides essential information relating the material to its mechanical properties. In this study we selected DP980, a type of dual-phase steel, to investigate the content of martensite and ferrite grains. A combination of advanced techniques was used to provide detailed and precise information of the microstructure. Scanning and transmission electron microscopy were used to provide observations of the sample surface at different scales. Martensite and ferrite phases of DP980 were further identified and characterized using electron backscatter diffraction and scanning probe microscopy. Results obtained with nanoindentation tests confirmed that the differences in nanohardness values in single-phase grains are martensite and ferrite with different surface heights shown by scanning probe microscopy. The similarity shown in the image quality map and scanning probe microscopy proves that a large fraction of martensite can be distinguished in this undeformed material using image quality parameters obtained during electron backscatter diffraction imaging.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.L. (1997). Orientation imaging microscopy: Emerging and future applications. Ultramicroscopy 67, 1117.CrossRefGoogle Scholar
Angeli, J., Fureder, E., Panholzer, M. & Kneissl, A.C. (2006). Etching techniques for characterizing the phases of low-alloy dual-phase and TRIP steels. Praktische Metallographie 43, 489504.Google Scholar
Bag, A., Ray, K. & Dwarakadasa, E. (1999). Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A 30, 11931202.CrossRefGoogle Scholar
Byun, T.S. & Kim, I.S. (1993). Tensile properties and inhomogeneous deformation of ferrite-martensite dual-phase steels. J Mater Sci 28, 29232932.CrossRefGoogle Scholar
Calcagnotto, M., Adachi, Y., Ponge, D. & Raabe, D. (2011). Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater 59, 658670.CrossRefGoogle Scholar
Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. (2010). Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527, 27382746.CrossRefGoogle Scholar
Choi, S.-H., Kim, E.-Y., Woo, W., Han, S. & Kwak, J. (2013). The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int J Plast 45, 85102.CrossRefGoogle Scholar
Cong, Z., Jia, N., Sun, X., Ren, Y., Almer, J. & Wang, Y. (2009). Stress and strain partitioning of ferrite and martensite during deformation. Metall Mater Trans A 40, 13831387.CrossRefGoogle Scholar
De, A.K., Speer, J.G. & Matlock, D.K. (2003). Color tint-etching for multiphase steels. Adv Mater Processes 161, 2730.Google Scholar
De Meyer, M., Kestens, L. & De Cooman, B. (2001). Texture development in cold rolled and annealed C-Mn-Si and C-Mn-Al-Si TRIP steels. Mater Sci Technol 17, 13531359.CrossRefGoogle Scholar
Dillien, S., Seefeldt, M., Allain, S., Bouaziz, O. & Van Houtte, P. (2010). EBSD study of the substructure development with cold deformation of dual phase steel. Mater Sci Eng A 527, 947953.CrossRefGoogle Scholar
Field, D.P. (1997). Recent advances in the application of orientation imaging. Ultramicroscopy 67, 19.CrossRefGoogle Scholar
Ghassemi-Armaki, H., Maaß, R., Bhat, S., Sriram, S., Greer, J. & Kumar, K. (2014). Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62, 197211.CrossRefGoogle Scholar
Girault, E., Jacques, P., Harlet, P., Mols, K., Van Humbeeck, J., Aernoudt, E. & Delannay, F. (1998). Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels. Mater Charact 40, 111118.CrossRefGoogle Scholar
Hutchinson, B., Ryde, L., Lindh, E. & Tagashira, K. (1998). Texture in hot rolled austenite and resulting transformation products. Mater Sci Eng A 257, 917.CrossRefGoogle Scholar
Jeong, B.-Y. (2014). A study on the surface characteristics of dual phase steel by electron backscatter diffraction (EBSD). Trans Electr Electron Mater 15, 2023.CrossRefGoogle Scholar
Jia, N., Cong, Z., Sun, X., Cheng, S., Nie, Z., Ren, Y., Liaw, P. & Wang, Y. (2009). An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Mater 57, 39653977.CrossRefGoogle Scholar
Jia, N., Peng, R.L., Wang, Y., Johansson, S. & Liaw, P. (2008). Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater 56, 782793.CrossRefGoogle Scholar
Kang, J., Ososkov, Y., Embury, J.D. & Wilkinson, D.S. (2007). Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56, 9991002.CrossRefGoogle Scholar
Krieger-Lassen, N. (1998). Automatic high‐precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction patterns. J Microsc 190, 375391.CrossRefGoogle Scholar
Krieger-Lassen, N., Jensen, D.J. & Conradsen, K. (1992). Image processing procedures for analysis of electron back scattering patterns. Scanning Microsc 6, 115121.Google Scholar
Laffey, S.M., Vig, J.R. & Hendrickson, M.A. (1997). Using colloidal silica and etching. US Patent US5605490.Google Scholar
Lloyd, G.E. (1987). Atomic number and crystallographic contrast images with the SEM: A review of backscattered electron techniques. Mineral Mag 51, 319.CrossRefGoogle Scholar
Oliver, W.C. & Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7, 15641583.CrossRefGoogle Scholar
Ososkov, Y., Wilkinson, D.S., Jain, M. & Simpson, T. (2007). In-situ measurement of local strain partitioning in a commercial dual-phase steel. Int J Mater Res 98, 664673.CrossRefGoogle Scholar
Petrov, R., Kestens, L., Wasilkowska, A. & Houbaert, Y. (2007). Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique. Mater Sci Eng A 447, 285297.CrossRefGoogle Scholar
Pierman, A.-P., Bouaziz, O., Pardoen, T., Jacques, P. & Brassart, L. (2014). The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater 73, 298311.CrossRefGoogle Scholar
Pinard, P.T., Schwedt, A., Ramazani, A., Prahl, U. & Richter, S. (2013). Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements. Microsc Microanal 19, 9961006.CrossRefGoogle ScholarPubMed
Prior, D.J., Mariani, E. & Wheeler, J. (2009). EBSD in the earth sciences: Applications, common practice, and challenges. In Electron Backscatter Diffraction in Materials Science, Adam J. Schwartz, Mukul Kumar, Brent L. Adams & David P. Field (Eds.), pp. 345360. New York, NY: Springer Science+Business Media.CrossRefGoogle Scholar
Ryde, L. (2006). Application of EBSD to analysis of microstructures in commercial steels. Mater Sci Technol 22, 12971306.CrossRefGoogle Scholar
Santofimia, M., Petrov, R., Zhao, L. & Sietsma, J. (2014). Microstructural analysis of martensite constituents in quenching and partitioning steels. Mater Charact 92, 9195.CrossRefGoogle Scholar
Schwindt, C., Bertinetti, M., Iurman, L., Rossit, C. & Signorelli, J.(2015). Numerical study of the effect of martensite plasticity on the forming limits of a dual-phase steel sheet. Int J Mater Form 119.Google Scholar
Suzuki, T. & Hara, Y. (1999). Polishing fluid composition and polishing method. US Patent 5885334 A.Google Scholar
Taylor, M., Choi, K., Sun, X., Matlock, D., Packard, C., Xu, L. & Barlat, F. (2014). Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mater Sci Eng A 597, 431439.CrossRefGoogle Scholar
Van der Voort, G., Lucas, G., Manilova, E. & Michael, J. (2004). Study of selective etching of carbides in steel. Sonderbande der Praktischen Metallographie 36, 255260.Google Scholar
Wardle, S., Lin, L., Cetel, A. & Adams, B. (1994). Orientation imaging microscopy: Monitoring residual stress profiles in single crystals using an image-quality parameter, IQ. In Proceedings of the Annual Meeting-Electron Microscopy Society of America, San Francisco Press, San Francisco, 680 pp.CrossRefGoogle Scholar
Woo, W., Em, V., Kim, E.-Y., Han, S., Han, Y. & Choi, S.-H. (2012). Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater 60, 69726981.CrossRefGoogle Scholar
Wright, S.I. & Nowell, M.M. (2006). EBSD image quality mapping. Microsc Microanal 12, 7284.CrossRefGoogle ScholarPubMed
Wu, J., Wray, P.J., Garcia, C.I., Hua, M. & DeArdo, A.J. (2005). Image quality analysis: A new method of characterizing microstructures. ISIJ Int 45, 254262.CrossRefGoogle Scholar
Xu, H., Dikin, D.A., Burkhart, C. & Chen, W. (2014). Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85, 206216.CrossRefGoogle Scholar
Zaefferer, S., Romano, P. & Friedel, F. (2008). EBSD as a tool to identify and quantify bainite and ferrite in low‐alloyed Al‐TRIP steels. J Microsc 230, 499508.CrossRefGoogle ScholarPubMed