Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:32:22.776Z Has data issue: false hasContentIssue false

The oxidation state of Ti in hibonite at the atomic scale

Published online by Cambridge University Press:  30 July 2021

Pierre-marie Zanetta
Affiliation:
Lunar and Planetary Laboratory, Tucson, Arizona, United States
Yao-Jen Chang
Affiliation:
Lunar and Planetary Laboratory, Tucson, Arizona, United States
Tarunika Ramprasad
Affiliation:
Materials Science and Engineering, University of Arizona, Tucson, Arizona, United States
Venkat Manga
Affiliation:
Lunar and Planetary Laboratory, Tucson, Arizona, United States
Juliane Weber
Affiliation:
Chemical Sciences Division Oak Ridge National Laboratory, Oak RidgeTN37830, United States
Thomas Zega
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Imaging and Spectroscopy for Nanoscale Materials Characterization
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Yoneda, S. and Grossman, L., 1995, Geochim. Cosmochim. Acta, vol. 59, no. 16, pp. 34133444.CrossRefGoogle Scholar
Curien, H., Guillemin, C., Orcel, J. T., and Sternberg, M., 1956, Comptes Rendus Hebd. des Seances l'Academie des Sci., vol. 242, no. 24, pp. 28452847.Google Scholar
Bermanec, V., Holtstam, D., Sturman, D., Criddle, A. J., Back, M. E., and Šćavničar, S., 1996, Can. Mineral., vol. 34, no. 6, pp. 12871297.Google Scholar
Keil, K. and Fuchs, L. H., 1971, Earth Planet. Sci. Lett., vol. 12, no. 2, pp. 184190.Google Scholar
Macpherson, G. J. and Grossman, L., 1984, Geochim. Cosmochim. Acta, vol. 48, no. 1, pp. 2946.CrossRefGoogle Scholar
Beckett, J. R., Live, D., Tsay, F. D., Grossman, L., and Stolper, E., 1988, Geochim. Cosmochim. Acta, vol. 52, no. 6, pp. 14791495.CrossRefGoogle Scholar
Doyle, P. M., Berry, A. J., Schofield, P. F., and Mosselmans, J. F. W., 2016, Geochim. Cosmochim. Acta, vol. 187, pp. 294310.CrossRefGoogle Scholar
J, A.. Berry et al. , 2017, Chem. Geol., vol. 466, pp. 3240.Google Scholar
Asaduzzaman, A., Muralidharan, K., and Zega, T. J., 2021, ACS Earth Sp. Chem., p. acsearthspacechem.0c00309.Google Scholar
Leapman, R. D., Grunes, L. A., and Fejes, P. L., 1982, Phys. Rev. B, vol. 26, no. 2, pp. 614635.CrossRefGoogle Scholar
Garvie, L. A. J. and Buseck, P. R., 1998, Nature, vol. 396, no. 6712, pp. 667670.CrossRefGoogle Scholar
Van Aken, P. A., Liebscher, B., and Styrsa, V. J., 1998, Phys. Chem. Miner., vol. 25, no. 5, pp. 323327.CrossRefGoogle Scholar
Stoyanov, E., Langenhorst, F., and Steinle-Neumann, G., 2007, Am. Mineral., vol. 92, no. 4, pp. 577586.Google Scholar
Blaha, P., WIEN2k, vol. 1. 2019.Google Scholar
Jorissen, K., 2007, Ph. D. thesis.Google Scholar
Ramprasad, T., Mane, P., and Zega, T. J., in Lunar and Planetary Science Conference, 2018, p. 2900.Google Scholar
de la Peña, F., et al. , 2020, hyperspy/hyperspy: HyperSpy 1.6.0.Google Scholar
Doyle, P. M., Schofield, P. F., Berry, A. J., Walker, A. M., and Knight, K. S., 2014, Am. Mineral., vol. 99, no. 7, pp. 13691382.Google Scholar
Simon, S. B., Davis, A. M., and Grossman, L., 1999, Geochim. Cosmochim. Acta, vol. 63, no. 7–8, pp. 12331248.CrossRefGoogle Scholar