Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T06:21:02.863Z Has data issue: false hasContentIssue false

Novel Radio-Frequency Gun Structures for Ultrafast Relativistic Electron Diffraction

Published online by Cambridge University Press:  03 July 2009

P. Musumeci*
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
L. Faillace
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
A. Fukasawa
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
J.T. Moody
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
B. O'Shea
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
J.B. Rosenzweig
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
C.M. Scoby
Affiliation:
University of California, Los Angeles, Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547
*
Corresponding author. E-mail: musumeci@physics.ucla.edu
Get access

Abstract

Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

Type
Special Section: Ultrafast Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akre, R., Dowell, D., Emma, P., Frisch, J., Gilevich, S., Hays, G., Hering, Ph., Iverson, R., Limborg-Deprey, C., Loos, H., Miahnahri, A., Schmerge, J., Turner, J., Welch, J., White, W. & Wu, J. (2008). Commissioning the LCLS injector. Phys Rev STAB 11, 030703.Google Scholar
Baum, P., Yang, D. & Zewail, A.H. (2007). 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788792.CrossRefGoogle ScholarPubMed
Born, M. & Wolf, E. (1975). Principles of Optics. Oxford: Pergamon Press.Google Scholar
Dudek, R.C. & Weber, P.M. (2001). Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J Phys Chem A 105, 41674171.CrossRefGoogle Scholar
Dwyer, J.R., Hebeisen, C.T., Ernstofer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Dwayne Miller, R.J. (2006). “Femtosecond electron diffraction”: Making the molecular movie. Phil Trans R Soc A 364, 741778.CrossRefGoogle ScholarPubMed
Flottman, K. (2000). Index of /∼mpyflo/Astra_dokumentation. Available at http://www.desy.de/~mpyflo/astra_dokumentation/.Google Scholar
Fukasawa, A., Rosenzweig, J., Boni, A., O'Shea, B., Alesini, D., Ferrario, M., Spataro, B., Ficcadenti, L., Mostacci, A. & Palumbo, L. (2008). Beam dynamics of the UCLA/INFN/URLS. Hybrid SW/TW photoinjector. Proceedings of 2008 FEL Conference, Korea.Google Scholar
Gedik, N., Yang, D.S., Logvenov, G., Bozovic, I. & Zewail, A.H. (2007). Non-equilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425429.CrossRefGoogle Scholar
Grivet, P. (1965). Electron Optics. Oxford: Pergamon Press.Google Scholar
Hastings, J.B., Rudakov, F.M., Dowell, D.H., Schmerge, J.F., Cardoza, J.D., Castro, J.M., Gierman, S.M., Loos, H. & Weber, P.M. (2006). Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett 89, 184109.CrossRefGoogle Scholar
ICFA. (2008). ICFA Beam Dynamics Newsletter. Available at http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_46.pdf.Google Scholar
Ihee, H., Lobastov, V.A., Gomez, U.M., Goodson, B.M., Srinivasan, R., Ruan, C. & Zewail, A.H. (2001). Direct imaging of transient molecular structure with ultrafast diffraction. Science 291, 458462.CrossRefGoogle ScholarPubMed
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97, 111101.CrossRefGoogle Scholar
Lobastov, V.A., Srinisavan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci 102, 70697073.CrossRefGoogle ScholarPubMed
Luiten, O.J., van der Geer, S.B., de Loos, M.J., Kiewiet, F.B. & van der Wiel, M.J. (2004). How to realize uniform three-dimensional ellipsoidal electron bunches. Phys Rev Lett 93, 094802.CrossRefGoogle ScholarPubMed
Musumeci, P., Moody, J.T., England, R.J., Rosenzweig, J.B. & Tran, T. (2008a). Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions. Phys Rev Lett 100, 244801.CrossRefGoogle ScholarPubMed
Musumeci, P., Moody, J.T. & Scoby, C.M. (2008b). Relativistic electron diffraction at the UCLA Pegasus Laboratory. Ultramicroscopy 108, 14501453.CrossRefGoogle ScholarPubMed
Musumeci, P., Moody, J.T., Scoby, C.M., Gutierrez, M.S. & Tran, T. (2009). RF-streak camera based ultrafast relativistic electron diffraction. Rev Sci Instrum 80, 013302.CrossRefGoogle ScholarPubMed
Nie, S., Wang, X., Park, H., Clinite, R. & Cao, J. (2006). Measurement of the electronic Gruneisen constant using femtosecond electron diffraction. Phys Rev Lett 96, 025901.CrossRefGoogle ScholarPubMed
O'Shea, B., Rosenzweig, J., Boni, A., Fukasawa, A., Alesini, D., Ferrario, M., Spataro, B., Ficcadenti, L., Mostacci, A. & Palumbo, L. (2008). RF design of the UCLA/INFN/URLS. Hybrid SW/TW photoinjector. Proceedings of 2006 Advanced Accelerator Concepts, Lake Geneva, WI.Google Scholar
Reed, B.W. (2006). Femtosecond electron pulse propagation for ultrafast electron diffraction. J Appl Phys 100, 034916.CrossRefGoogle Scholar
Ruan, C., Lobastov, V.A., Vigliotti, F., Chen, S. & Zewail, A.H. (2004). Ultrafast electron crystallography of interracial water. Science 304, 8084.CrossRefGoogle Scholar
Schmerge, J.F., Clendenin, J.E., Dowell, D.H. & Gierman, S.M. (2007). RF gun photo-emission model for metal cathodes including time dependent emission (SLAC-PUB-11700). Int J Mod Phys A22, 40694082.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Dwayne Miller, R.J. (2002). Ultrafast electron optics: Propagation dynamics of femtosecond electron packets. J Appl Phys 92, 16431648.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Dwayne Miller, R.J. (2003). An atomic-level view of melting using ultrafast electron diffraction. Science 302, 13821385.CrossRefGoogle Scholar
Van Oudheudsen, T., De Jong, E.F., Van der Geer, S.B., Op 't Root, W.P.E.M., Siwick, B.J. & Luiten, O.J. (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys 102, 093501.CrossRefGoogle Scholar
Wang, X.J., Wu, Z. & Ihee, H. (2003). Femto-seconds electron beam diffraction using photocathode RF gun. Proceedings of the 2003 Particle Accelerator Conference, Portland, OR.CrossRefGoogle Scholar
Wang, X.J., Xiang, D., Kim, T.J. & Ihee, H. (2006). Potential of femtosecond electron diffraction using near-relativistic electrons from a photocathode RF electron gun. J Korean Phys Soc 48, 390393.Google Scholar
Zewail, A.H. (2006). 4D ultrafast electron diffraction, crystallography and microscopy. Ann Rev Phys Chem 57, 65103.CrossRefGoogle ScholarPubMed