Article contents
Morphological Alterations of CAD Cells Overexpressing AKT1
Published online by Cambridge University Press: 30 July 2020
Abstract
CAD cells are neuronal cells used in studies of cell differentiation and in cellular models of neuropathology. When cultured in differentiation medium, CAD cells exhibit characteristics of mature neurons including the generation of action potential. In addition to being a central signaling kinase in cell survival, AKT1 plays important roles in the nervous system including neuroplasticity and this study examined the localization of exogenous AKT1 in CAD cells. Neuropeptides modulate many signal transduction pathways and melacortins are implicated in regulating growth factor signal transduction pathways, including the PI3K/AKT pathway. AKT1-DsReD was transfected into CAD cells that were stably expressing melanocortin 3-receptor-GFP (MC3R-GFP), a G-protein coupled receptor. The cells were imaged with confocal microscopy to determine the fluorescent protein localization patterns. AKT1-DsRed was predominantly localized in the cytoplasm and the nucleus. Further, expression of exogenous AKT1 in these cell lines led to morphological changes reminiscent of apoptosis. As expected, MC3R-GFP localized to the plasma membrane but it internalized upon cell stimulation with the cognate ligand. In limited areas of the plasma membrane, AKT1-DsRed and MC3R-GFP were colocalized. In conclusion, quantitative studies to understand the role of relative levels of AKT1 in determining cell survival are needed.
- Type
- Biomedical and Pharmaceutical Research on the Development, Diagnosis, Prevention, and Treatment of Diseases
- Information
- Copyright
- Copyright © Microscopy Society of America 2020
References
- 2
- Cited by