Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:39:44.264Z Has data issue: false hasContentIssue false

Local Response of Sialoliths to Lithotripsy: Cues on Fragmentation Outcome

Published online by Cambridge University Press:  24 April 2017

Pedro Nolasco*
Affiliation:
CeFEMA, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Ana J. dos Anjos
Affiliation:
Clindem-Clínica dentária e médica Lda., Rua José Morais, 23 r/c Dto, 2685-076 Sacavém, Loures, Portugal
José Dias
Affiliation:
Service of Stomotology, Centro Hospitalar de Lisboa Norte, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
Paulo V. Coelho
Affiliation:
Nova Medical School – Medical Sciences Faculty (NMS/FCM), Nova University of Lisbon, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal Service of Maxillofacial Surgery, Centro Hospitalar de Lisboa Central, R. José António Serrano, 1150-199 Lisboa, Portugal
Carla Coelho
Affiliation:
Nova Medical School – Medical Sciences Faculty (NMS/FCM), Nova University of Lisbon, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal Service of Maxillofacial Surgery, Centro Hospitalar de Lisboa Central, R. José António Serrano, 1150-199 Lisboa, Portugal
Manuel Evaristo
Affiliation:
EG-CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, P-3030 788 Coimbra, Portugal
Albano Cavaleiro
Affiliation:
EG-CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, P-3030 788 Coimbra, Portugal
António Maurício
Affiliation:
CERENA, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Manuel F. C. Pereira
Affiliation:
CERENA, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Virgínia Infante
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
António P. Alves de Matos
Affiliation:
CESAM/CiiEM, Instituto Egas Moniz, Monte da Caparica, 2829-511 Caparica, Portugal
Raúl C. Martins
Affiliation:
IT, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Patricia A. Carvalho
Affiliation:
CeFEMA, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal SINTEF Materials and Chemistry, Forskningsveien, 1, 0373 Oslo, Norway
*
*Corresponding author. pedro.nolasco@ist.utl.pt
Get access

Abstract

Lithotripsy methods show relatively low efficiency in the fragmentation of sialoliths compared with the success rates achieved in the destruction of renal calculi. However, the information available on the mechanical behavior of sialoliths is limited and their apparently tougher response is not fully understood. This work evaluates the hardness and Young’s modulus of sialoliths at different scales and analyzes specific damage patterns induced in these calcified structures by ultrasonic vibrations, pneumoballistic impacts, shock waves, and laser ablation. A clear correlation between local mechanical properties and ultrastructure/chemistry has been established: sialoliths are composite materials consisting of hard and soft components of mineralized and organic nature, respectively. Ultrasonic and pneumoballistic reverberations damage preferentially highly mineralized regions, leaving relatively unaffected the surrounding organic matter. In contrast, shock waves leach the organic component and lead to erosion of the overall structure. Laser ablation destroys homogeneously the irradiated zones regardless of the mineralized/organic nature of the underlying ultrastructure; however, damage is less extensive than with mechanical methods. Overall, the present results show that composition and internal structure are key features behind sialoliths’ comminution behavior and that the organic matter contributes to reduce the therapeutic efficiency of lithotripsy methods.

Type
Biological Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, K., Dasgupta, P. & Khan, M.S. (2006). Cystine calculi: Challenging group of stones. Postgrad Med J 82, 799801.Google Scholar
Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitao, J. (2007). On the structural diversity of sialoliths. Microsc Microanal 13, 390396.Google Scholar
Anneroth, G., Isacsson, G. & Lundquist, P.G. (1979). The mineral content of salivary calculi. A quantitative microradiographic and diffractometric study. Dentomaxillofac Radiol 8, 3341.Google Scholar
Argon, A.S., Im, J. & Safoglu, R. (1975). Cavity formation from inclusions in ductile fracture. Metall Trans A 6, 825.CrossRefGoogle Scholar
Capaccio, P., Torretta, S., Ottavian, F., Sambataro, G. & Pignataro, L. (2007). Modern management of obstructive salivary diseases. Acta Otorhinolaryngol Ital 27, 161172.Google Scholar
Cernavin, I. (1995). A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel. Aust Dent J 40, 7984.Google Scholar
Cohen, N.P. & Whitfield, H.N. (1993). Mechanical testing of urinary calculi. World J Urol 11, 1318.Google Scholar
Doerner, M.F. & Nix, W.D. (1986). A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1, 601609.Google Scholar
Escudier, M.P. (2001). Epidemiology and aetiology of salivary calculi. In Controversies in the Management of Salivary Gland Disease, McGurk, M. & Combes, J.G. (Eds.), pp. 251259. Oxford: Oxford University Press.Google Scholar
Fong, H., Sarikaya, M., White, S.N. & Snead, M.L. (1999). Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater Sci Eng C 7, 119128.Google Scholar
Gross, K.A. & Bhadang, K.A. (2004). Sintered hydroxyfluorapatites. Part III: Sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 25, 13951405.Google Scholar
Gross, K.A. & Rodriguez-Lorenzo, L.M. (2004). Sintered hydroxyfluorapatites. Part II: Mechanical properties of solid solutions determined by microindentation. Biomaterials 25, 13851394.Google Scholar
Gullerud, A.S., Gao, X., Dodds, R.H. Jr. & Haj-Ali, R. (2000). Simulation of ductile crack growth using computational cells: Numerical aspects. Eng Fract Mech 66, 6592.Google Scholar
Habelitz, S., Marshall, S.J., Marshall, G.W. Jr. & Balooch, M. (2001). Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46, 173183.Google Scholar
Harrill, J.A., King, J.S. Jr. & Boyce, W.H. (1959). Structure and composition of salivary calculi. Laryngoscope 69, 481492.Google Scholar
Harrison, J.D. (2009). Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 42, 927947.Google Scholar
He, L.H. & Swain, M.V. (2007). Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28, 45124520.Google Scholar
Heimbach, D., Munver, R., Zhong, P., Jacobs, J., Hesse, A., Muller, S.C. & Preminger, G.M. (2000). Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164, 537544.Google Scholar
Iro, H., Zenk, J., Escudier, M.P., Nahlieli, O., Capaccio, P., Katz, P., Brown, J. & McGurk, M. (2009). Outcome of minimally invasive management of salivary calculi in 4,691 patients. Laryngoscope 119, 263268.Google Scholar
Jayasree, R.S., Gupta, A.K., Vivek, V. & Nayar, V.U. (2008). Spectroscopic and thermal analysis of a submandibular sialolith of Wharton’s duct resected using Nd:YAG laser. Lasers Med Sci 23, 125131.Google Scholar
Kim, H.S., Hong, S.I. & Kim, S.J. (2001). On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. J Mater Process Technol 112, 109113.Google Scholar
Lokhandwalla, M. & Sturtevant, B. (2000). Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45, 19231940.Google Scholar
Marchal, F., Kurt, A.M., Dulguerov, P. & Lehmann, W. (2001). Retrograde theory in sialolithiasis formation. Arch Otolaryng Head Neck Surg 127, 6668.Google Scholar
McClain, P.D., Lange, J.N. & Assimos, D.G. (2013). Optimizing shock wave lithotripsy: A comprehensive review. Rev Urol 15, 4960.Google Scholar
Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M. & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Prog Mater Sci 53, 1206.Google Scholar
Nolasco, P., Anjos, A.J., Marques, J.M., Cabrita, F., da Costa, E.C., Mauricio, A., Pereira, M.F.C., de Matos, A.P. & Carvalho, P.A. (2013). Structure and growth of sialoliths: Computed microtomography and electron microscopy investigation of 30 specimens. Microsc Microanal 19, 11901203.Google Scholar
Oliver, W.C. & Pharr, G.M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19, 320.Google Scholar
Park, S., Wang, D.H., Zhang, D., Romberg, E. & Arola, D. (2008). Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med 19, 23172324.Google Scholar
Phillips, J. & Withrow, K. (2014). Outcomes of holmium laser–assisted lithotripsy with sialendoscopy in treatment of sialolithiasis. Otolaryngol Head Neck Surg 150, 962967.Google Scholar
Pittomvils, G., Vandeursen, H., Wevers, M., Lafaut, J.P., De Ridder, D., De Meester, P., Boving, R. & Baert, L. (1994). The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol 20, 803810.Google Scholar
Prien, E.L. & Prien, E.L. Jr. (1968). Composition and structure of urinary stone. Am J Med 45, 654672.Google Scholar
Qin, Q. & Ye, J. (2015). Toughening Mechanisms in Composite Materials. Swaston, Cambridge: Woodhead Publishing.Google Scholar
Slomiany, B.L., Murty, V.L., Aono, M., Slomiany, A. & Mandel, I.D. (1982). Lipid composition of the matrix of human submandibular salivary gland stones. Arch Oral Biol 27, 673677.Google Scholar
Swamy, K.M., Sarveswara Rao, K., Narayana, K.L., Murty, J.S. & Ray, H.S. (1995). Application of ultrasound in leaching. Miner Process Extr Metall Rev 14, 179192.Google Scholar
Tanaka, N., Ichinose, S., Adachi, Y., Mimura, M. & Kimijima, Y. (2003). Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36, 120126.Google Scholar
Verdier, J.M. (1993). [Macromolecular inhibitors of crystallization in saliva and bile]. Nephrologie 14, 251255.Google Scholar
Zhang, J.-h. & Liu, Z.-h. (1998). Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model. J Petrol Sci Eng 21, 123128.Google Scholar
Zheng, W. & Denstedt, J.D. (2000). Intracorporeal lithotripsy. Update on technology. Urol Clin North Am 27, 301313.Google Scholar
Zhong, P., Chuong, C.J., Goolsby, R.D. & Preminger, G.M. (1992). Microhardness measurements of renal calculi: Regional differences and effects of microstructure. J Biomed Mater Res 26, 11171130.Google Scholar
Zhong, P., Chuong, C.J. & Preminger, G.M. (1993). Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 12, 14601462.Google Scholar
Zhong, P. & Preminger, G.M. (1994). Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol 8, 263268.Google Scholar