Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T20:20:31.972Z Has data issue: false hasContentIssue false

Investigation of Organic Matter Entrapped in Synthetic Carbonates—A Multimethod Approach

Published online by Cambridge University Press:  21 December 2012

Emilie Chalmin*
Affiliation:
ESRF, BP 220, 38043 Grenoble, France EDYTEM, UMR 5204, Université de Savoie/CNRS, 73376 Le Bourget du Lac, France
Yves Perrette
Affiliation:
EDYTEM, UMR 5204, Université de Savoie/CNRS, 73376 Le Bourget du Lac, France
Bernard Fanget
Affiliation:
EDYTEM, UMR 5204, Université de Savoie/CNRS, 73376 Le Bourget du Lac, France
Jean Susini
Affiliation:
ESRF, BP 220, 38043 Grenoble, France
*
*Corresponding author. E-mail: emilie.chalmin-aljanabi@univ-savoie.fr
Get access

Abstract

Organic matter (OM) entrapped in calcite is regularly used for environmental studies; however, insertion mechanisms and types of interaction remain poorly understood. The present study used a new methodology to investigate interactions between OM and the calcite matrix during crystallization processes with humic acid (HA) entrapment. A multimethod approach confirmed that HA is both adsorbed onto the calcite surface and incorporated into the calcite lattice during crystallization. Our results also confirm the log-linear correlation between fluorescence intensity and calcite matrix HA concentration. Fourier transform infrared spectroscopy showed that HA in colloidal conformation is adsorbed onto the calcite surface as a result of the structure of the OH stretching band. We also developed a new method based on synchrotron analysis that uses sulfur as a tracer element for entrapped HA and that localizes the OM electrostatically adsorbed onto the calcite surface. Changes in the sulfur environment, determined using X-ray absorption near-edge structure spectroscopy, indicated more complex insertion mechanisms than simple adsorption of HA during calcite crystallization. Desorption experiments revealed the stability of the OM atomic structure and its layered nature. These results allowed us to draw up a general model of OM insertion in calcite.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Aal, N. & Sawada, K. (2003). Inhibition of adhesion and precipitation of CaCO3 by aminophosphonate. J Cryst Growth 256, 188200.Google Scholar
Amjad, Z. (1987). Kinetic study of the seeded growth of calcium carbonate in the presence of benzenepolycarboxylic acids. Langmuir 3, 224228.Google Scholar
Astilleros, J.M., Pina, C.M., Fernandez-Diaz, L. & Putnis, A. (2000). The effect of barium on calcite {1014} surfaces during growth. Geochim Cosmochim Acta 64, 29652972.Google Scholar
Avena, M.J. & Koopal, L.K. (1999). Kinetics of humic acid adsorption at solid-water interfaces. Environ Sci Technol 33, 27392744.Google Scholar
Baker, A., Barnes, W.L. & Smart, P.L. (1996). Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of palaeovegetation change. Chem Geol 130, 6576.Google Scholar
Baker, A., Caseldine, C.J., Gilmour, M.A., Charman, D., Proctor, C.J., Hawkesworth, C.J. & Phillips, N. (1999). Stalagmite luminescence and peat humification records of palaeomoisture for the last 2500 years. Earth Planet Sci Lett 165, 157162.CrossRefGoogle Scholar
Blyth, A.J., Baker, A., Collins, M.J., Penkman, K.E.H., Gilmour, M.A., Moss, J.S., Genty, D. & Drysdale, R.N. (2008). Molecular organic matter in speleothems and its potential as an environmental proxy. Quat Sci Rev 27, 905921.CrossRefGoogle Scholar
Bonnin-Mosbah, M., Métrich, N., Susini, J., Salomé, M., Massare, D. & Menez, B. (2002). Micro X-ray absorption near edge structure at the sulfur and iron K-edges in natural silicate glasses. Spectrochim Acta B 57, 711725.CrossRefGoogle Scholar
Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A. & Susini, J. (2007). Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species. Geochim Cosmochim Acta 71, 14941512.CrossRefGoogle Scholar
Bostick, B.C., Theissen, K.M., Dunbar, R.B. & Vairavamurthy, M.A. (2005). Record of redox status in laminated sediments from Lake Titicaca: A sulfur K-edge X-ray absorption near edge structure (XANES) study. Chem Geol 219, 163174.CrossRefGoogle Scholar
Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E.P. (2003). Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids. J Sedimentary Res 73, 485490.Google Scholar
Burdon, J. (2001). Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166, 752769.Google Scholar
Clapp, C.E. & Hayes, M.H.B. (1999). Sizes and shapes of humic substances. Soil Sci 164, 777789.Google Scholar
Collectif (1999). Special Issue. Soil Sci 164, 777876.Google Scholar
Cusack, M., Dauphin, Y., Cuif, J.-P., Salomé, M., Freer, A. & Yin, H. (2008). Micro-XANES mapping of sulphur and its association with magnesium and phosphorus in the shell of the brachiopod, Terebratulina retusa. Chem Geol 253, 172179.CrossRefGoogle Scholar
Dauphin, Y., Cuif, P., Doucet, J., Salomé, M., Susini, J. & Willams, C.T. (2003). In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J Struct Biol 142, 272280.Google Scholar
Davis, K.J., Dove, P.M., Wasylenki, L.E. & De Yoreo, J.J. (2004). Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite. Am Mineral 89, 714720.Google Scholar
Dreybrodt, W., Buhmann, D., Michaelis, J. & Usdowski, E. (1992). Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol 97, 285294.CrossRefGoogle Scholar
Fairchild, I.J. & Treble, P. (2009). Trace elements in speleothems as recorders of environmental change. Quaternary Sci Rev 28, 449468.Google Scholar
Fenter, P., Geissbuhler, P., DiMasi, E., Srajer, G., Sorensen, L.B. & Sturchio, N.C. (2000). Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochim Cosmochim Acta 64, 12211228.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Fairchild, I.J. & Susini, J. (2005). Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses. Earth Planet Sci Lett 235, 729740.Google Scholar
Fukushima, M., Yamamoto, K., Ootsuka, K., Komai, T., Aramaki, T., Ueda, S. & Horiya, S. (2009). Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresour Technol 100, 791797.CrossRefGoogle ScholarPubMed
Genty, D., Baker, A. & Vokal, B. (2001). Intra- and inter-annual growth rate of modern stalagmites. Chem Geol 176, 191212.CrossRefGoogle Scholar
Giguet-Covex, C., Arnaud, F., Poulenard, F., Enters, D., Reyss, J.-L., Millet, L., Lazzaroto, J. & Vidal, O. (2010). Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. J Paleolimnol 43, 171190.CrossRefGoogle Scholar
Godelitsas, A., Astilleros, J.M., Hallam, K., Harissopoulos, S. & Putnis, A. (2003). Interaction of calcium carbonates with lead in aqueous solutions. Environ Sci Technol 37, 33513360.Google Scholar
Gruzensky, P.M. (1967). Growth of calcite crystals. In Crystal Growth, Peiser, H.S. (Ed.), pp. 365367. Oxford, UK: Pergamon.Google Scholar
Hartland, A., Fairchild, I.J., Lead, J.R., Borsato, A., Baker, A., Frisia, S. & Baalousha, M. (2012). From soil to cave: Transport of trace metals by natural organic matter in cave dripwaters. Chem Geol 304305, 6882.CrossRefGoogle Scholar
Henriksen, K., Stipp, S.L.S., Young, J.R. & Marsh, M.E. (2004). Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. Am Mineral 89, 17091716.CrossRefGoogle Scholar
Hoch, A.R., Reddy, M.M. & Aiken, G.R. (2000). Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim Cosmochim Acta 64, 6172.Google Scholar
Hundal, L.S., Carmo, A.M., Bleam, W.L. & Thompson, M.L. (2000). Sulfur in biosolids-derived fulvic acid: Characterization by XANES spectroscopy and selective dissolution approaches. Environ Sci Technol 34, 51845188.Google Scholar
Jones, G. & Indig, G.L. (1996). Spectroscopic and chemical binding properties of humic acids in water. New J Chem 20, 221232.Google Scholar
Kameda, Y., Teshigawara, Y., Sughi, M., Amo, Y. & Usuki, T. (2007). Structure of amorphous NaCl-glucose system studied by X-ray diffraction and IR methods. J Non-Cryst Solids 353, 19901993.Google Scholar
Kelleher, B.P. & Simpson, A.J. (2006). Humic substances in soils: Are they really chemically distinct? Environ Sci Technol 40, 46054611.Google Scholar
Kitano, Y. & Hood, D.W. (1965). The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim Cosmochim Acta 29, 2941.Google Scholar
Kontrec, J., Kralj, D., Brecevic, L. & Falini, G. (2008). Influence of some polysaccharides on the production of calcium carbonate filler particles. J Cryst Growth 310, 45544560.CrossRefGoogle Scholar
Lee, Y.J., Elzinga, E.J. & Reeder, R.J. (2005). Cu(II) adsorption at the calcite-water interface in the presence of natural organic matter: Kinetic studies and molecular-scale characterization. Geochim Cosmochim Acta 69, 4961.Google Scholar
Lee, Y.J. & Reeder, R.J. (2006). The role of citrate and phthalate during Co(II) coprecipitation with calcite. Geochim Cosmochim Acta 70, 22532263.CrossRefGoogle Scholar
Lin, Y.-P., Singer, P.C. & Aiken, G.R. (2005). Inhibition of calcite precipitation by natural organic material: Kinetics, mechanism, and thermodynamics. Environ Sci Technol 39, 64206428.Google Scholar
Liu, Z., Zu, Y., Meng, R., Xing, Z., Tan, S., Zhao, L., Sun, T. & Zhou, Z. (2011). Adsorption of humic acid onto carbonaceous surfaces: Atomic force microscopy study. Microsc Microanal 17, 10151021.Google Scholar
Lu, Y. & Allen, H.E. (2002). Characterization of copper complexation with natural dissolved organic matter (DOM)—Link to acidic moieties of DOM and competition by Ca and Mg. Water Res 36, 50835101.Google Scholar
Maia, C., Piccolo, A. & Mangrich, A.S. (2008). Molecular size distribution of compost-derived humates as a function of concentration and different counterions. Chemosphere 73, 11621166.CrossRefGoogle ScholarPubMed
Malkaj, P. & Dalas, E. (2004). Calcium carbonate crystallization in the presence of aspartic acid. Cryst Growth Des 4, 721723.Google Scholar
Maslen, E.N., Streltsov, V.A., Streltsova, N.R. & Ishizawa, N. (1995). Electron density and optical anisotropy in rhombohedral carbonates: 3. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3 . Acta Crystallogr B-Struct Sci 51, 929939.Google Scholar
Morra, M.J., Fendorf, S.E. & Brown, P.D. (1997). Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy. Geochim Cosmochim Acta 613, 683688.CrossRefGoogle Scholar
Myneni, S.C.B., Brown, J.T., Martinez, G.A. & Meyer-Ilse, W. (1999). Imaging of humic substance macromolecular structures in water and soils. Science 286, 13351337.CrossRefGoogle ScholarPubMed
Namjesnik-Dejanovic, K., Maurice, P.A., Aiken, G.R., Cabaniss, S., Chin, Y.-P. & Pullin, M.J. (2000). Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8. Soil Sci 165, 545559.Google Scholar
Oelkers, E.H., Golubev, S.V., Pokrovsky, O.S. & Bénézeth, P. (2011). Do organic ligands affect calcite dissolution rates? Geochim Cosmochim Acta 75, 17991813.Google Scholar
Ogino, T., Suzuki, T. & Sawada, K. (1990). The rate and mechanism of polymorphic transformation of calcium carbonate in water. J Cryst Growth 100, 159167.Google Scholar
Orme, C.A., Noy, A., Wierzbicki, A., McBride, M.T., Grantham, M., Teng, H.H., Dove, P.M. & De Yoreo, J.J. (2001). Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775779.CrossRefGoogle ScholarPubMed
Paquette, J. & Reeder, R.J. (1995). Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta 59, 735749.Google Scholar
Perrette, Y., Delannoy, J.J., Desmet, M., Lignier, V. & Destombes, J.L. (2005). Speleothem organic matter content imaging. The use of a fluorescence index to characterise the maximum emission wavelength. Chem Geol 214, 193208.Google Scholar
Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Sci 166, 810832.Google Scholar
Prietzel, J., Thieme, J., Herre, A., Salomé, M. & Eichert, D. (2008). Differentiation between adsorbed and precipitated sulphate in soils and at micro-sites of soil aggregates by sulphur K-edge XANES. Eur J Soil Sci 59, 730743.CrossRefGoogle Scholar
Prietzel, J., Thieme, J., Salomé, M. & Knicker, H. (2007). Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biol Biochem 39, 877890.CrossRefGoogle Scholar
Ramseyer, K., Miano, T.M., D'Orazio, V., Wildberger, A., Wagner, T. & Geister, J. (1997). Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons. Org Geochem 26, 361378.Google Scholar
Reddy, M.M. & Hoch, A.R. (2001). Calcite crystal growth rate inhibition by polycarboxylic acids. J Colloid Interface Sci 235, 365370.CrossRefGoogle ScholarPubMed
Reyhani, M.M., Oliveira, A., Parkinson, G.M., Jones, F., Rohl, A.L. & Ogden, M.I. (2002). In situ characterization of calcite growth and inhibition using atomic force microscopy. Int J Mod Phys B 16, 2533.Google Scholar
Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Munoz, M.T. & Rodriguez-Gallego, M. (2007). Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71, 11971213.Google Scholar
Ruiz-Agudo, E., Putnis, C.V., Rodriguez-Navarro, C. & Putnis, A. (2011). Effect of pH on calcite growth at constant ratio and supersaturation. Geochim Cosmochim Acta 75, 284296.Google Scholar
Shin, H.-S., Monsallier, J.M. & Choppin, G.R. (1999). Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta 50, 641647.Google Scholar
Siéliéchi, J.M., Lartiges, B.S., Kayem, G.J., Hupont, S., Frochot, C., Thieme, J., Ghanbaja, J., d'Espinose de la Caillerie, J.B., Barrès, O., Kamga, R., Levitz, P. & Michot, L.J. (2008). Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Res 42, 21112123.CrossRefGoogle ScholarPubMed
Steeling, C. (2002). Investigating humic acids in soils. Anal Chem 74, 326A333A.Google Scholar
Suess, E. (1970). Interaction of organic compounds with calcium carbonate—I. Association phenomena and geochemical implications. Geochim Cosmochim Acta 34, 157168.Google Scholar
Sutton, R. & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environ Sci Technol 39, 90099015.Google Scholar
Tourney, J. & Ngwenya, B.T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem Geol 262, 138146.Google Scholar
Ueyama, N., Takahasi, K., Onoda, A., Okamura, T. & Yamamoto, H. (2002). Tight binding of poly(carboxylate) ligand of calcium carbonate with intramolecular NH-0 hydrogen bond. Macromol Symp 186, 129134.3.0.CO;2-F>CrossRefGoogle Scholar
Van Beynen, P., Ford, D. & Schwarcz, H. (2000). Seasonal variability in organic substances in surface and cave waters at marengo Cave, Indiana. Hydrol Processes 14, 11771197.Google Scholar
Vdovic, N. & Kralj, D. (2000). Electrokinetic properties of spontaneoulsy precipitated calcium carbonate polymorphs: The influence of organic substances. Colloids Surf A 161, 499505.CrossRefGoogle Scholar
Verrecchia, E.P. & Verrecchia, K.E. (1994). Needle-fiber calcite; a critical review and a proposed classification. J Sediment Res A64, 650664.Google Scholar
Weiner, S. & Addadi, L. (1997). Design strategies in mineralized biological materials. J Mater Chem 7, 689702.CrossRefGoogle Scholar
White, W. (2007). Paleoclimate records from speleothems in limestone caves. In Studies of Cave Sediments, 2nd ed., Sasowsky, I.D. & Mylorie, J. (Eds.), pp. 135175. Springer Netherlands.Google Scholar
Wynn, P.M., Fairchild, I.J., Frisia, S., Spötl, C., Baker, A. & Borsato, A. (2010). High-resolution sulphur isotope analysis of speleothem carbonate by secondary ionisation mass spectrometry. Chem Geol 271, 101107.Google Scholar
Zak, K., Urban, J., Cilek, V. & Hercman, H. (2004). Cryogenic cave calcite from several Central European caves: Age, carbon and oxygen isotopes and a genetic model. Chem Geol 206, 119136.Google Scholar