Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T20:04:50.608Z Has data issue: false hasContentIssue false

Interpretation of the Nano-Electron-Diffraction Patterns along the Five-Fold Axis of Decahedral Gold Nanoparticles

Published online by Cambridge University Press:  16 February 2011

L.D. Romeu
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, D.F., México
J. Reyes-Gasga*
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, D.F., México
*
Corresponding author. E-mail: jreyes@fisica.unam.mx
Get access

Abstract

The transition from 10-fold to 5-fold symmetry was observed during the analysis of nanodiffraction patterns of a gold decahedral multiple twinned nanoparticle of 15 nm in diameter. The analysis shows that as the convergence of the beam is increased, the rotational symmetry of the diffraction pattern shifts from 10- to 5-fold. The 10-fold symmetry predicted by Friedel's law is lost by the asymmetric shift of the diffraction spots, an effect that becomes more noticeable as the electron beam convergence increases. Dynamical and kinematical diffraction calculations indicate this decrease in symmetry is the result of a double refraction effect coupled with the variation of the dynamical diffraction conditions arising from a varying electron beam convergence.

Type
Material Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allpress, J.G. & Sanders, J.V. (1967). The structure and orientation of crystals in deposits of metals on mica. Surf Sci 7, 125.CrossRefGoogle Scholar
Bagley, B.G. (1965). A dense packing of hard spheres with five-fold symmetry. Nature 208, 674675.CrossRefGoogle Scholar
Brust, M., Fink, J., Bethell, D., Schiffring, D.J. & Kiely, C. (1995). Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Comm 16, 16551656.CrossRefGoogle Scholar
Chen, Y., Gu, X, Nie, C.G., Jiang, Z.Y., Xie, Z.X. & Lin, C.J. (2005). Shape controlled growth of gold nanoparticles by a solution synthesis. J Royal Soc Chem Chem Comm 33, 41814183.Google Scholar
Elechiguerra, J.L., Reyes-Gasga, J. & Jose-Yacaman, M. (2006). The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mat Chem 16, 39063919.CrossRefGoogle Scholar
Ganesh, K.J., Kawasaki, M., Zhou, J.P. & Ferreira, P.J. (2009). D-STEM: A parallel diffraction technique applied to nanomaterials. Proceedings of 11th International Conference on Advanced Materials, Rio de Janeiro, Brasil, September 20–25. Symp. D. Abstract D579.Google Scholar
Gillet, M.F. & Brieu, M. (1989). Structure investigation of multiply-twinned Ni particles by electron investigation. Z Phys D 12, 107111.Google Scholar
Gillet, M.F. & Channakhone, S. (1986). Crystallographic structure and chemisorptions activity of palladium/mica model catalysts: I. Structure and morphology of small palladium particles. J Catalysis 97, 427436.Google Scholar
Gomez, A., Beltran-Del-Rio, L. & Herrera-Becerra, R. (2010). SimulaTEM: Multislice simulations for general objects. Ultramicroscopy 110, 95104.CrossRefGoogle Scholar
Gomez, A., Schabes-Retchiman, P. & Jose-Yacaman, M. (1982). Microdiffraction patterns of icosahedral particles. Thin Solid Films 98, L95L97.CrossRefGoogle Scholar
Heinemann, K., Yacaman, M.J., Yang, C.Y. & Poppa, H. (1979). The structure of small, vapor-deposited particles: I. Experimental study of single crystals and particles with pentagonal profiles. J Crystal Growth 47, 177186.Google Scholar
Hofmeister, H. (1998). Forty years study of five-fold twinned structures in small particles and thin film. Cryst Res Technol 33, 325.Google Scholar
Howie, A. & Marks, L.D. (1984). Elastic strains and energy balance for multiply twinned particles Phil Mag A 49, 95109.CrossRefGoogle Scholar
Iijima, S. (1987). Fine particles of silicon: II. Decahedral multiply-twinned particles. Jpn J Appl Phys 26, 365372.Google Scholar
Inada, H., Nakamura, K., Terauchi, D., Tanaka, H., Taniguchi, Y., Isakozawa, S. & Jaraush, K. (2006). Diffraction capability with Cs-corrected STEM. Proceedings of IMC16, Sapporo, Vol. 2, p. 622. International Microscopy Congress.Google Scholar
Ino, S. (1966). Epitaxial growth of metals on rocksalt faces cleaved in vacum. II. Orientation and structure of gold particles formed in ultrahigh vacuum. J Phys Soc Jpn 21, 346362.Google Scholar
Ino, S. & Ogawa, S. (1967). Multiple twinned particles at earlier stages of gold film formation on alkalinehalide crystals. J Phys Soc Jpn 22, 13651374.CrossRefGoogle Scholar
Ino, S., Ogawa, S., Taoka, T. & Akahori, H. (1972). A study of multiple-twinned particles by 1000kV electron microscope. Jpn J Appl Phys 11, 1859.Google Scholar
Kato, N. & Uyeda, R. (1951). Dynamical theory of electron diffraction of a finite polyhedral crystal I. Acta Cryst 4, 227229.Google Scholar
Malac, M., Wang, F., Egerton, R. & Taniguchi, T. (2007). Parallel beam nano-diffraction analysis of individual nanoparticles. Microsc Microanal 13, 558559.Google Scholar
Marks, L.D. (1984). Surface structure and energetics of multiply twinned particles. Phil Mag A 49, 8193.Google Scholar
Marks, L.D. (1985). Imaging small particles. Ultramicroscopy 18, 445452.Google Scholar
Marks, L.D. & Smith, D.J. (1981). High resolution studies of small particles of gold and silver: I. Multiply-twinned particles. J Crystal Growth 54, 425432.Google Scholar
Reyes-Gasga, J., Tehuacanero-Nuñez, S., Montejano-Carrizales, J.M., Gao, X. & Jose-Yacaman, M. (2007). Analysis of the contrast in icosahedral gold nanoparticles. Top Catal 46, 2330.Google Scholar
Robinson, F. & Gillet, M. (1982). Electron microscopy investigation of structure and morphology of small supported metal particles of palladium. Thin Solid Films 98, 179196.CrossRefGoogle Scholar
Smith, D.J. & Marks, L.D. (1981). High resolution studies of small particles of gold and silver: II. Single crystals, lamellar twins and polyparticles. J Crystal Growth 54, 433438.CrossRefGoogle Scholar
Yang, C. (1979). Crystallography of decahedral and icosahedral particles: I. Geometry of twinning. J Cryst Growth 47, 274283.CrossRefGoogle Scholar
Yang, C., Yacaman, M.J. & Heinemann, K. (1979). Crystallography of decahedral and icosahedral particles: II. High symmetry orientations. J Crystal Growth 47, 283290.Google Scholar