Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T13:11:50.104Z Has data issue: false hasContentIssue false

In Situ High-Temperature EBSD and 3D Phase Field Studies of the Austenite–Ferrite Transformation in a Medium Mn Steel

Published online by Cambridge University Press:  12 April 2019

Hussein Farahani*
Affiliation:
Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
Gerrit Zijlstra
Affiliation:
Department of Applied Physics, Materials Innovation Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
Maria Giuseppina Mecozzi
Affiliation:
Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
Václav Ocelík
Affiliation:
Department of Applied Physics, Materials Innovation Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
Jeff Th. M. De Hosson
Affiliation:
Department of Applied Physics, Materials Innovation Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
Sybrand van der Zwaag
Affiliation:
Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands School of Materials Science and Engineering, Tsinghua University, Beijing, China
*
*Author for correspondence: H. Farahani, E-mail: H.Farahani@tudelft.nl
Get access

Abstract

In this research, in situ high-temperature electron backscattered diffraction (EBSD) mapping is applied to record and analyze the migration of the α/γ interfaces during cyclic austenite–ferrite phase transformations in a medium manganese steel. The experimental study is supplemented with related 3D phase field (PF) simulations to better understand the 2D EBSD observations in the context of the 3D transformation events taking place below the surface. The in situ EBSD observations and PF simulations show an overall transformation behavior qualitatively similar to that measured in dilatometry. The behavior and kinetics of individual austenite–ferrite interfaces during the transformation is found to have a wide scatter around the average interface behavior deduced on the basis of the dilatometric measurements. The trajectories of selected characteristic interfaces are analyzed in detail and yield insight into the effect of local conditions in the vicinity of interfaces on their motion, as well as the misguiding effects of 2D observations of processes taking place in 3D.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, M (2013). Mapping the fracture properties of engineering materials. Philos Mag 93, 38783892. http://www.tandfonline.com/doi/abs/10.1080/14786435.2013.794983 (Accessed December 13, 2017).Google Scholar
Ayachit, U (2015). The ParaView Guide: A Parallel Visualization Application. USA: Kitware, Inc.Google Scholar
Bos, C & Sietsma, J (2009). Application of the maximum driving force concept for solid-state partitioning phase transformations in multi-component systems. Acta Mater 57, 136144. https://www.sciencedirect.com/science/article/pii/S1359645408006320?via%3Dihub (Accessed July 5, 2018).Google Scholar
Brener, EA, Boussinot, G, Hüter, C, Fleck, M, Pilipenko, D, Spatschek, R & Temkin, DE (2009). Pattern formation during diffusional transformations in the presence of triple junctions and elastic effects. J Phys: Condens Matter 21, 464106. http://stacks.iop.org/0953-8984/21/i=46/a=464106?key=crossref.4f59cb608ef310a67e221e50e4d33f8e (Accessed July 10, 2018).Google Scholar
Brooks, JW, Loretto, MH & Smallman, RE (1979). In situ observations of the formation of martensite in stainless steel. Acta Metall 27, 18291838. https://www.sciencedirect.com/science/article/pii/0001616079900737 (Accessed January 4, 2019).Google Scholar
Chen, H (2013). Cyclic Partial Phase Transformations in Low Alloyed Steels: Modeling and Experiments. Delft University of Technology https://repository.tudelft.nl/islandora/object/uuid:66975e4a-4b2d-4933-95c5-f180b6605882?collection=research (Accessed July 31, 2017).Google Scholar
Chen, H, Appolaire, B & van der Zwaag, S (2011). Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling. Acta Mater 59, 67516760. http://www.sciencedirect.com/science/article/pii/S135964541100509X (Accessed March 13, 2017).Google Scholar
Chen, H, Gamsjäger, E, Schider, S, Khanbareh, H & van der Zwaag, S (2013 a). In situ observation of austenite–ferrite interface migration in a lean Mn steel during cyclic partial phase transformations. Acta Mater 61, 24142424.Google Scholar
Chen, H, Kuziak, R & van der Zwaag, S (2013 b). Experimental evidence of the effect of alloying additions on the stagnant stage length during cyclic partial phase transformations. Metallurgical and Materials Transactions A 44, 56175621. http://link.springer.com/10.1007/s11661-013-2040-0 (Accessed January 21, 2017).Google Scholar
Chen, H & van der Zwaag, S (2011). Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys. J Mater Sci 46, 13281336. http://link.springer.com/10.1007/s10853-010-4922-5 (Accessed November 4, 2016).Google Scholar
Chen, H & van der Zwaag, S (2012 a). Indirect evidence for the existence of the Mn partitioning spike during the austenite to ferrite transformation. Philos Mag Lett 92, 8692.Google Scholar
Chen, H & Van Der Zwaag, S (2012 b). An experimental study of the stagnant stage in bainite phase transformations starting from austenite-bainite mixtures. In TMP 2012––4th International Conference on Thermomechanical Processing of Steels. Sheffield, UK, 10–12 September https://www.scopus.com/record/display.uri?eid=2-s2.0-84896891374&origin=resultslist&sort=plf-f&src=s&sid=1946a7bc694969cb3dc997da6da11cd7&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857188745139%29&relpos=33&citeCnt=0&searchTerm= (Accessed September 27, 2017).Google Scholar
Chen, H & van der Zwaag, S (2013). Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages. Acta Mater 61, 13381349. http://www.sciencedirect.com/science/article/pii/S1359645412008051 (Accessed January 21, 2017).Google Scholar
Chen, H & van der Zwaag, S (2016). An overview of the cyclic partial austenite-ferrite transformation concept and its potential. Metall Mater Trans A 110. http://link.springer.com/10.1007/s11661-016-3826-7 (Accessed January 21, 2017).Google Scholar
Cheng, L, Wu, KM, Wan, XL & Wei, R (2014). In-situ observation on the growth of Widmanstätten sideplates in an Fe–C–Mn steel. Mater Charact 87, 8694. https://www.sciencedirect.com/science/article/pii/S104458031300346X (Accessed June 30, 2016).Google Scholar
Christian, JW (2002). The Theory of Transformations in Metals and Alloys. Oxford: Pergamon.Google Scholar
Clemm, P & Fisher, J (1955). The influence of grain boundaries on the nucleation of secondary phases. Acta Metall 3, 7073. http://www.sciencedirect.com/science/article/pii/0001616055900146?via%3Dihub (Accessed June 30, 2016).Google Scholar
de Gennes, P-G, Brochard-Wyart, F & Quéré, D (2004). Capillarity and Wetting Phenomena. New York, NY: Springer New York. http://link.springer.com/10.1007/978-0-387-21656-0 (Accessed May 14, 2018).Google Scholar
Du, J, Mompiou, F & Zhang, W-Z (2018). In-situ TEM study of dislocation emission associated with austenite growth. Scr Mater 145, 6266. https://www.sciencedirect.com/science/article/pii/S1359646217306000?via%3Dihub (Accessed December 13, 2017).Google Scholar
Ecob, RC & Ralph, B (1981). A model of the equilibrium structure of F.C.C./B.C.C. interfaces. Acta Metall 29, 10371046. https://www.sciencedirect.com/science/article/pii/0001616081900559?via%3Dihub (Accessed December 13, 2017).Google Scholar
Edmonds, V & Honeycombe, RWK (1978). Photoemission electron microscopy of growth of grain boundary ferrite allotriomorphs in chromium steel. Met Sci 12, 399405. http://www.tandfonline.com/doi/full/10.1179/030634578790434016 (Accessed January 4, 2019).Google Scholar
Enomoto, M & Wan, XL (2017). In situ observation of austenite growth during continuous heating in very-low-carbon Fe-Mn and Ni alloys. Metall Mater Trans A 48, 15721580. http://link.springer.com/10.1007/s11661-017-3961-9 (Accessed March 15, 2017).Google Scholar
Fan, K, Liu, F, Liu, XN, Zhang, YX, Yang, GC & Zhou, YH (2008). Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement. Acta Mater 56, 43094318. https://www.sciencedirect.com/science/article/pii/S1359645408003364?via%3Dihub (Accessed February 27, 2018).Google Scholar
Fukino, T & Tsurekawa, S (2008). In-situ SEM/EBSD observation of αγ phase transformation in Fe-Ni alloy. Mater Trans 49, 27702775. https://www.jstage.jst.go.jp/article/matertrans/49/12/49_MAW200824/_article (Accessed December 12, 2017).Google Scholar
Fukino, T, Tsurekawa, S & Morizono, Y (2011). In-situ scanning electron microscopy/electron backscattered diffraction observation of microstructural evolution during αγ phase transformation in deformed Fe-Ni alloy. Metall Mater Trans A 42, 587593. http://link.springer.com/10.1007/s11661-010-0285-4 (Accessed December 12, 2017).Google Scholar
Gamsjäger, E & Rettenmayr, M (2015). The kinetics of diffusive phase transformations in the light of trans-interface diffusion. Philos Mag 95, 28512865. http://www.tandfonline.com/doi/full/10.1080/14786435.2015.1078514 (Accessed December 13, 2017).Google Scholar
Gottstein, G (2004). Solid state phase transformations. In Physical Foundations of Materials Science, pp. 389422. Berlin, Heidelberg: Springer Berlin Heidelberg http://www.springerlink.com/index/10.1007/978-3-662-09291-0_10 (Accessed November 4, 2016).Google Scholar
Gottstein, G & Shvindlerman, LS (2006). Grain boundary junction engineering. Scr Mater 54, 10651070. https://www.sciencedirect.com/science/article/pii/S1359646205008080?via%3Dihub (Accessed November 30, 2017).Google Scholar
Gottstein, G, Sursaeva, V & Shvindlerman, LS (1999). The effect of triple junctions on grain boundary motion and grain microstructure evolution. Interface Sci 7, 273283. http://link.springer.com/10.1023/A:1008721426104 (Accessed December 12, 2017).Google Scholar
Gouné, M, Danoix, F, Ågren, J, Bréchet, Y, Hutchinson, CR, Militzer, M, Purdy, G, van der Zwaag, S & Zurob, H (2015). Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater Sci Eng R Rep 92, 138.Google Scholar
Gourgues-Lorenzon, AF (2007). Application of electron backscatter diffraction to the study of phase transformations. Int Mater Rev 52, 65128. http://www.tandfonline.com/doi/full/10.1179/174328007X160254 (Accessed December 12, 2017).Google Scholar
Gourgues-Lorenzon, AF (2009). Application of electron backscatter diffraction to the study of phase transformations: Present and possible future. J Microsc 233, 460473. http://doi.wiley.com/10.1111/j.1365-2818.2009.03130.x (Accessed December 12, 2017).Google Scholar
Guan, D, Nutter, J, Sharp, J, Gao, J & Mark Rainforth, W (2017). Direct observation of precipitation along twin boundaries and dissolution in a magnesium alloy annealing at high temperature. Scr Mater 138, 3943. https://www.sciencedirect.com/science/article/pii/S1359646217302592?via%3Dihub (Accessed December 12, 2017).Google Scholar
Hilgenfeldt, S, Kraynik, AM, Reinelt, DA & Sullivan, JM (2004). The structure of foam cells: Isotropic plateau polyhedra. Europhys Lett (EPL) 67, 484490. http://stacks.iop.org/0295-5075/67/i=3/a=484?key=crossref.c67458f0b38b15f8cb6701473f7a176a (Accessed November 30, 2017).Google Scholar
Hillert, M (2002). Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite. Scr Mater 46, 447453. http://linkinghub.elsevier.com/retrieve/pii/S135964620101257X (Accessed November 4, 2016).Google Scholar
Kobler, A, Hahn, H & Kübel, C (2012). In-situ straining analysis by TEM orientation mapping (EBSD-like TEM) - direct imaging of deformation processes in nanocrystalline metals. Microsc Microanal 18, 724725.Google Scholar
Kostorz, G (ed.) (2001). Phase Transformations in Materials. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA http://doi.wiley.com/10.1002/352760264X (Accessed November 4, 2016).Google Scholar
Lischewski, I, Kirch, DM, Ziemons, A & Gottstein, G (2008). Investigation of the αγα phase transformation in steel: High-temperature In situ EBSD measurements. Texture Stress Microstr 2008, 17. http://www.hindawi.com/archive/2008/294508/ (Accessed December 12, 2017).Google Scholar
Liu, J, Chen, C, Feng, Q, Fang, X, Wang, H, Liu, F, Lu, J & Raabe, D (2017). Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study. Mater Sci Eng A 703, 236243. https://www.sciencedirect.com/science/article/pii/S0921509317308833?via%3Dihub (Accessed July 9, 2018).Google Scholar
Mecozzi, MG, Sietsma, J & Van Der Zwaag, S (2005). Phase field modelling of the interfacial condition at the moving interphase during the γα transformation in C-Mn steels. Comput Mater Sci 34, 290297.Google Scholar
Middleton, CJ & Edmonds, DV (1977). The application of photoemission electron microscopy to the study of diffusional phase transformations in steels. Metallography 10, 5587. https://www.sciencedirect.com/science/article/pii/002608007790043X (Accessed January 4, 2019).Google Scholar
Middleton, CJ & Form, GW (1975). Direct observation of an austenite memory effect in low-alloy steels. Met Sci 9, 521528. http://www.tandfonline.com/doi/full/10.1179/030634575790444810 (Accessed January 4, 2019).Google Scholar
Militzer, M, Hoyt, JJ, Provatas, N, Rottler, J, Sinclair, CW & Zurob, HS (2014). Multiscale modeling of phase transformations in steels. JOM 66, 740746. http://link.springer.com/10.1007/s11837-014-0919-x (Accessed December 13, 2017).Google Scholar
Militzer, M, Mecozzi, MG, Sietsma, J & van der Zwaag, S (2006). Three-dimensional phase field modelling of the austenite-to-ferrite transformation. Acta Mater 54, 39613972.Google Scholar
Mishra, RK (2012). Tutorial: A guide to EBSD for in-situ studies. Microsc Microanal 18, 19661967.Google Scholar
Mishra, RK. & Kubic, R Jr. (2008). In situ EBSD of microstructure evolution during deformation. Microsc Microanal 14, 552553.Google Scholar
Moine, P, Rivieri, JP, Ruault, MO, Chaumont, J, Pelton, A & Sinclair, R (1985). In situ TEM study of martensitic NiTi amorphization by Ni ion implantation. Nucl Instrum Methods Phys Res Sect B 7–8, 2025. https://www.sciencedirect.com/science/article/pii/0168583X85905233 (Accessed January 4, 2019).Google Scholar
Mompiou, F, Wu, J & Zhang, W-Z (2015). A preliminary in-situ TEM study of martensite/austenite interface migration in an Fe-20Ni-5.4Mn alloy. Mater Today: Proc 2, S651S654. https://www.sciencedirect.com/science/article/pii/S2214785315006136?via%3Dihub (Accessed December 13, 2017).Google Scholar
Nowell, MM, Wright, SI & Carpenter, JO (2009). In-situ orientation imaging of recrystallization and grain growth in OFHC copper. Microsc Microanal 15, 678.Google Scholar
Offerman, SE, van Dijk, NH, Sietsma, J, Lauridsen, EM, Margulies, L, Grigull, S, Poulsen, HF & van der Zwaag, S (2004). Solid-state phase transformations involving solute partitioning: Modeling and measuring on the level of individual grains. Acta Mater 52, 47574766. https://www.sciencedirect.com/science/article/pii/S1359645404003660?via%3Dihub (Accessed February 27, 2018).Google Scholar
Offerman, SEE (2004). Microstructures in 4D. Science 305, 190191.Google Scholar
Onink, M, Tichelaar, FD, Brakman, CM, Mittemeijer, EJ & van der Zwaag, S (1995). An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites. J Mater Sci 30, 62236234. http://link.springer.com/10.1007/BF00369670 (Accessed December 12, 2017).Google Scholar
Phelan, D, Stanford, N & Dippenaar, R. (2005). In situ observations of Widmanstätten ferrite formation in a low-carbon steel. Mater Sci Eng A 407, 127134. https://www.sciencedirect.com/science/article/pii/S0921509305007148?via%3Dihub (Accessed December 13, 2017).Google Scholar
Prior, D, Seward, G, Bestmann, M, Piazolo, S & Wheeler, J (2003). EBSD at high temperatures in metals and minerals. Microsc Microanal 9, 7879.Google Scholar
Purdy, G, Ågren, J, Borgenstam, A, Bréchet, Y, Enomoto, M, Furuhara, T, Gamsjager, E, Gouné, M, Hillert, M, Hutchinson, C, Militzer, M & Zurob, H (2011). ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces. Metall Mater Trans A 42, 37033718. http://link.springer.com/10.1007/s11661-011-0766-0 (Accessed September 26, 2017).Google Scholar
Purdy, GR (1978 a). The dynamics of transformation interfaces in steels-I. The ferrite-austenite interface in Fe-C-Mo alloys. Acta Metall 26, 477486. http://linkinghub.elsevier.com/retrieve/pii/0001616078901736 (Accessed July 1, 2016).Google Scholar
Purdy, GR (1978 b). The dynamics of transformation interfaces in steels-II. Transformations in FE-C-MO alloys at intermediate temperatures. Acta Metall 26, 487498. http://linkinghub.elsevier.com/retrieve/pii/0001616078901748 (Accessed July 1, 2016).Google Scholar
Raghavan, V & Cohen, M (1975). Solid-State phase transformations. In Changes of State, pp. 67127. Boston, MA: Springer US http://link.springer.com/10.1007/978-1-4757-1120-2_2 (Accessed November 4, 2016).Google Scholar
Ratanaphan, S, Olmsted, DL, Bulatov, VV, Holm, EA, Rollett, AD & Rohrer, GS (2015). Grain boundary energies in body-centered cubic metals. Acta Mater 88, 346354. https://ac.els-cdn.com/S1359645415000828/1-s2.0-S1359645415000828-main.pdf?_tid=72bc3922-d066-11e7-86f6-00000aab0f01&acdnat=1511452597_a3c45db47ee96c655522daff572d0cf1 (Accessed November 23, 2017).Google Scholar
Sainis, S, Farahani, H, Gamsjäger, E & van der Zwaag, S (2018). An in-situ LSCM study on bainite formation in a Fe-0.2C-1.5Mn-2.0Cr alloy. Metals (Basel) 8, 498. http://www.mdpi.com/2075-4701/8/7/498 (Accessed July 10, 2018).Google Scholar
Seward, GGE, Prior, DJ, Wheeler, J, Celotto, S, Halliday, DJM, Paden, RS & Tye, MR (2006). High-temperature electron backscatter diffraction and scanning electron microscopy imaging techniques: In-situ investigations of dynamic processes. Scanning 24, 232240. http://doi.wiley.com/10.1002/sca.4950240503 (Accessed December 12, 2017).Google Scholar
Shirazi, H, Miyamoto, G, Hossein Nedjad, S, Chiba, T, Nili Ahmadabadi, M & Furuhara, T (2018). Microstructure evolution during austenite reversion in Fe-Ni martensitic alloys. Acta Mater 144, 269280. https://www.sciencedirect.com/science/article/pii/S1359645417309357?via%3Dihub (Accessed August 29, 2018).Google Scholar
Steinbach, I & Pezzolla, F (1999). A generalized field method for multiphase transformations using interface fields. Phys D, Nonlinear Phenom 134, 385393. https://www.sciencedirect.com/science/article/pii/S0167278999001293?via%3Dihub (Accessed May 31, 2018).Google Scholar
Svoboda, J, Gamsjäger, E, Fischer, FD, Liu, Y & Kozeschnik, E (2011). Diffusion processes in a migrating interface: The thick-interface model. Acta Mater 59, 47754786. https://www.sciencedirect.com/science/article/pii/S135964541100262X (Accessed December 7, 2017).Google Scholar
The Math Works Inc. (2007). MATLAB Image Processing Toolbox Realese 2015b. Natick, MA, USA: The Math Works Inc. https://www.mathworks.com/products/image.htmlGoogle Scholar
Torres, EA & Ramírez, AJ (2011). In situ scanning electron microscopy. Sci Technol Weld Joining 16, 6878. https://doi.org/10.1179/136217110X12785889550028.Google Scholar
van der Zwaag, S, Anselmino, E, Miroux, A & Prior, DJ (2006). In-situ SEM observations of moving interfaces during recrystallisation. Mater Sci Forum 519–521, 13411348. http://www.scientific.net/MSF.519-521.1341 (Accessed December 13, 2017).Google Scholar
Verbeken, K, Barbé, L & Raabe, D (2009). Evaluation of the crystallographic orientation relationships between FCC and BCC phases in TRIP steels. ISIJ Int 49, 16011609. http://joi.jlc.jst.go.jp/JST.JSTAGE/isijinternational/49.1601?from=CrossRef (Accessed November 20, 2017).Google Scholar
Watanabe, T, Obara, K & Tsurekawa, S (2004). In-situ observations on interphase boundary migration and grain growth during α/γ phase transformation in iron alloys. Mater Sci Forum 467–470, 819824. http://www.scientific.net/MSF.467-470.819 (Accessed December 12, 2017).Google Scholar
Wert, C & Zener, C (1950). Interference of growing spherical precipitate particles. J Appl Phys 21, 58. http://aip.scitation.org/doi/10.1063/1.1699422 (Accessed February 27, 2018).Google Scholar
Witusiewicz, VT, Hecht, U & Rex, S (2013). In-situ observation of eutectic growth in Al-based alloys by light microscopy. J Cryst Growth 372, 5764. https://www.sciencedirect.com/science/article/pii/S0022024813001656?via%3Dihub (Accessed December 13, 2017).Google Scholar
Witusiewicz, VT, Hecht, U, Rex, S & Apel, M (2005). In situ observation of microstructure evolution in low-melting Bi–In–Sn alloys by light microscopy. Acta Mater 53, 36633669. https://www.sciencedirect.com/science/article/pii/S1359645405002417?via%3Dihub (Accessed December 13, 2017).Google Scholar
Wright, SI, Field, DP & Nowell, MM (2005). Impact of local texture on recrystallization and grain growth via in-situ EBSD. Mater Sci Forum 495–497, 11211130. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751354041&partnerID=40&md5=ace510fd8eed6cb342affa8f82e474ef.Google Scholar
Wright, SI, Nowell, MM, De Kloe, R & Chan, L (2014). Orientation precision of electron backscatter diffraction measurements near grain boundaries. Microsc Microanal 20, 852863.Google Scholar
Yufatova, SM, Sindeyev, YG, Gavrilyatchenko, VG & Fesenko, EG (1980). Different kinetic types of phase transformation in lead titanate. Ferroelectrics 26, 809812. https://doi.org/10.1080/00150198008008177Google Scholar
Zhang, F, Ruimi, A & Field, DP (2016). Phase identification of dual-phase (DP980) steels by electron backscatter diffraction and nanoindentation techniques. Microsc Microanal 22, 99107.Google Scholar
Zhang, YB, Budai, JD, Tischler, JZ, Liu, W, Xu, R, Homer, ER, Godfrey, A & Juul Jensen, D (2017). Boundary migration in a 3D deformed microstructure inside an opaque sample. Sci Rep 7, 4423. http://www.nature.com/articles/s41598-017-04087-9 (Accessed December 13, 2017).Google Scholar
Zhu, J, Ding, R, He, J, Yang, Z, Zhang, C & Chen, H (2017). A cyclic austenite reversion treatment for stabilizing austenite in the medium manganese steels. Scr Mater 136, 610. http://www.sciencedirect.com/science/article/pii/S1359646217301732Google Scholar
Zijlstra, G, van Daalen, MMSB, Vainchtein, DIDi, Ocelík, V & De Hosson, JtJTM (2017). Interphase boundary motion elucidated through in-situ high temperature electron back-scatter diffraction. Mater Des 132, 138147. https://ac.els-cdn.com/S0264127517306573/1-s2.0-S0264127517306573-main.pdf?_tid=815e5eaa-d03a-11e7-a556-00000aacb361&acdnat=1511433715_f40a5e9afeefcf6229b6111b79e59ead (Accessed November 23, 2017).Google Scholar