Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T07:56:27.527Z Has data issue: false hasContentIssue false

Impact of the Synthesis Kinetics of Entropy-stabilized Oxide Thin Films Probed with 4D-STEM and STEM-EELS

Published online by Cambridge University Press:  30 July 2021

Leixin Miao
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States
George Kotsonis
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, Pennsylvania, United States
Jim Ciston
Affiliation:
UC Berkeley, California, United States
Colin Ophus
Affiliation:
Lawrence Berkeley National Laboratory, California, United States
Jon-Paul Maria
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, Pennsylvania, United States
Nasim Alem
Affiliation:
Pennsylvania State University, Washington, District of Columbia, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Quantum Materials Probed by High Spatial and Energy Resolution in Scanning/Transmission Electron Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. (2015). doi:10.1038/ncomms9485CrossRefGoogle ScholarPubMed
Chen, K. et al. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. (2018). doi:10.1016/j.jeurceramsoc.2018.04.063Google Scholar
Rost, C. M., Rak, Z., Brenner, D. W. & Maria, J. P. Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study. Journal of the American Ceramic Society 100, 27322738 (2017).CrossRefGoogle Scholar
Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. (2018). doi:10.1016/j.scriptamat.2017.08.040Google Scholar
Bérardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi - Rapid Res. Lett. (2016). doi:10.1002/pssr.201600043CrossRefGoogle Scholar
Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A (2016). doi:10.1039/c6ta03249dCrossRefGoogle Scholar
Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, (2018).CrossRefGoogle ScholarPubMed
Kotsonis, G. N. et al. Property and cation valence engineering in entropy-stabilized oxide thin films. Phys. Rev. Mater. (2020). doi:10.1103/PhysRevMaterials.4.100401CrossRefGoogle Scholar
Miao, L., Kotsonis, G., Maria, J.-P. & Alem, N. High-Resolution STEM/STEM-EELS Characterization of Entropy-stabilized Oxides Thin Films. Microsc. Microanal. (2020). doi:10.1017/s1431927620017304Google Scholar
Zeltmann, S. E. et al. Patterned Probes for High Precision 4D-STEM Bragg Measurements. (2019).CrossRefGoogle Scholar