Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-24T13:49:19.062Z Has data issue: false hasContentIssue false

Graphene – A Promising Electrode Material in Liquid Cell Electrochemistry

Published online by Cambridge University Press:  30 July 2021

Shu Fen Tan
MIT, Massachusetts, United States
Kate Reidy
Massachusetts Institute of Technology (MIT), United States
Serin Lee
MIT, Cambridge, Massachusetts, United States
Julian Klein
MIT, United States
Nicholas Schneider
Renata Global, United States
Hae Yeon Lee
Massachusetts Institute of Technology, United States
Frances Ross
MIT, United States


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
New Frontiers in In-Situ Electron Microscopy in Liquids and Gases (L&G EM FIG Sponsored)
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America


Hynek, D. J.; Pondick, J. V.; Cha, J. J., The development of 2D materials for electrochemical energy applications: A mechanistic approach. APL Materials 2019, 7 (3), 030902.Google Scholar
Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y. H.; Lee, T., The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012, 23 (11), 112001.CrossRefGoogle ScholarPubMed
Ke, Q.; Wang, J., Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics 2016, 2 (1), 37-54.CrossRefGoogle Scholar
Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K., Graphene as Transparent Electrode Material for Organic Electronics. Adv. Mater. 2011, 23 (25), 2779-2795.CrossRefGoogle ScholarPubMed
Wang, H.; Hu, Y. H., Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5 (8), 8182-8188.CrossRefGoogle Scholar
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J., Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Acc. Chem. Res. 2016, 49 (9), 2015-2022.Google ScholarPubMed
Schneider, N. M.; Park, J. H.; Grogan, J. M.; Steingart, D. A.; Bau, H. H.; Ross, F. M., Nanoscale evolution of interface morphology during electrodeposition. Nature Communications 2017, 8 (1), 2174.CrossRefGoogle ScholarPubMed
Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2003, 2 (8), 532-536.CrossRefGoogle ScholarPubMed
Radisic, A.; Vereecken, P. M.; Hannon, J. B.; Searson, P. C.; Ross, F. M., Quantifying Electrochemical Nucleation and Growth of Nanoscale Clusters Using Real-Time Kinetic Data. Nano Lett. 2006, 6 (2), 238-242.CrossRefGoogle ScholarPubMed
de Jonge, N.; Houben, L.; Dunin-Borkowski, R. E.; Ross, F. M., Resolution and aberration correction in liquid cell transmission electron microscopy. Nature Reviews Materials 2019, 4 (1), 61-78.CrossRefGoogle Scholar
This work made use of facilities and instrumentation supported by NSF through the Massachusetts Institute of Technology Materials Research Science and Engineering Center under Grant DMR-1419807.Google Scholar