Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:58:42.842Z Has data issue: false hasContentIssue false

The First Years of the Aberration-Corrected Electron Microscopy Century

Published online by Cambridge University Press:  31 July 2012

Philip E. Batson*
Affiliation:
Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854, USA
*
Corresponding author. E-mail: batson@physics.rutgers.edu
Get access

Abstract

Aberration correction, after a 50 year incubation period of developing ideas and techniques while awaiting enabling technology, has transformed electron microscopy during the first dozen years of the 21st century. Some of the conditions that accompanied this transformation, the required complexity and its effect on the way microscopy is pursued, recent results that promise to change the field, and directions for the future are briefly described.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., Findlay, S.D., Lupini, A.R., Oxley, M.P. & Pennycook, S.J. (2003). Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys Rev Lett 91(10), 105503105507.CrossRefGoogle ScholarPubMed
Batson, P.E. (2008). Motion of gold atoms on carbon in the aberration corrected stem. Microsc Microanal 14, 8997.Google Scholar
Batson, P.E., Chen, C.H. & Silcox, J. (1976). Plasmon dispersion at large wavevectors in Al. Phys Rev Lett 37, 937940.CrossRefGoogle Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.CrossRefGoogle ScholarPubMed
Batson, P.E., Reyes-Coronado, A., Barrera, R.G., Rivacoba, A., Echenique, P.M. & Aizpurua, J. (2011). Plasmonic nano-billiards: Controlling nanoparticle movement using forces induced by swift electrons. Nano Lett 11(8), 33883393.CrossRefGoogle ScholarPubMed
Batson, P.E., Silcox, J. & Vincent, R. (1971). Computer control of energy-loss analysis in an electron microscope. In Proc. 29th EMSA, Bailey, G.W. (ed.), Clators, Baton Rouge, pp. 3031.Google Scholar
Bell, D.C., Russo, C.J. & Benner, G. (2010). Sub-ångstrom low-voltage performance of a monochromated, aberration-corrected transmission electron microscope. Microsc Microanal 16(4), 386392.Google Scholar
Chu, M.-W., Liou, S.C., Chang, C.-P., Choa, F.-S. & Chen, C.H. (2010). Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys Rev Lett 104, 196101. CrossRefGoogle Scholar
Crewe, A.V., Isaacson, M. & Johnson, D. (1971). A high resolution electron spectrometer for use in transmission scanning electron microscopy. Rev Sci Instrum 42(4), 411420.Google Scholar
Crewe, A.V. & Wall, J. (1970). Contrast in a high resolution scanning transmission electron microscope. Optik 30, 461474.Google Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101. Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Hawkes, P.W. & Kasper, E. (1996). Principles of Electron Optics, vol. 2, chapter 41. New York: Academic Press.Google Scholar
Hillier, J. & Baker, R.F. (1944). Microanalysis by means of electrons. J Appl Phys 15, 663675.CrossRefGoogle Scholar
Hobbs, L.W. (1979). Application of transmission electron microscopy to radiation damage in ceramics. J Am Ceram Soc 62, 267278.Google Scholar
Howie, A. (2004). Hunting the Stobbs factor. Ultramicroscopy 98(2-4), 7379.CrossRefGoogle ScholarPubMed
Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A. & Kaiser, U. (2012). Direct imaging of a two-dimensional silica glass on graphene. Nano Lett 12(2), 10811086.CrossRefGoogle ScholarPubMed
Ishikawa, R., Okunishi, E., Sawada, H., Kondo, Y., Hosokawa, F. & Abe, E. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10(4), 278281.Google Scholar
Koppens, F.H.L., Chang, D.E. & García De Abajo, F.J. (2011). Graphene plasmonics: A platform for strong light-matter interactions. Nano Lett 11(8), 33703377.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.Google Scholar
Krivanek, O.L., Dellby, N., Spence, A.J., Camps, R.A. & Brown, L.M. (1997). Aberration correction in the STEM. In Electron Microscopy and Analysis, Institute of Phys. Conf. Ser. 153, Institute of Physics, Bristol, pp. 3540.Google Scholar
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.J., Dellby, N., Hrncirik, P., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Philos Trans R Soc A 367(1903), 36833697.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101. Google Scholar
Muller, D.A., Fitting-kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.CrossRefGoogle ScholarPubMed
Muller, D.A. & Grazul, J. (2001). Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J Elec Microsc 50(3), 219226.Google Scholar
Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J. & Zhang, T. (2011). Single-atom catalysis of co oxidation using Pt1/FeO x . Nat Chem 3(8), 634641.CrossRefGoogle Scholar
Rose, H.H. (2008). Optics of high-performance electron microscopes. Sci Technol Adv Mater 9, 014107. Google Scholar
Rose, H.H. (2009). Future trends in aberration-corrected electron microscopy. Phil Trans R Soc A 367, 38093823.Google Scholar
Sasaki, T., Sawada, H., Hosokawa, F., Kohno, Y., Tomita, T., Kaneyama, T., Kondo, Y., Kimoto, K., Sato, Y. & Suenaga, K. (2010). Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J Elect Microsc 59(Suppl 1), S7S13.CrossRefGoogle ScholarPubMed
Scherzer, O. (1947). Spharische und chromatische korrektur von elektronen-linsen. Optik 2, 114132.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Shah, A.B., Ramasse, Q.M., May, S.J., Kavich, J., Wen, J.G., Zhai, X., Eckstein, J.N., Freeland, J., Bhattacharya, A. & Zuo, J.M. (2010). Presence and spatial distribution of interfacial electronic states in LaMnO3-SrMnO3 superlattices. Phys Rev B 82(11), 115112. Google Scholar
Smith, D.J. (2008). Development of aberration-corrected electron microscopy. Microsc Microanal 14(1), 215.CrossRefGoogle ScholarPubMed
Suenaga, K. & Koshino, M. (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468(7327), 10881090.Google Scholar
Yurtsever, A., Van Der Veen, R.M. & Zewail, A.H. (2012). Subparticle ultrafast spectrum imaging in 4d electron microscopy. Science 335(6064), 5964.Google Scholar
Zhou, W., Lee, J., Nanda, J., Pantelides, S.T., Pennycook, S.J. & Idrobo, J.-C. (2012). Atomically localized plasmon enhancement in monolayer graphene. Nat Nano 7(3), 161165.Google Scholar
Zhou, W., Ross-Medgaarden, E.I., Knowles, W.V., Wong, M.S., Wachs, I.E. & Kiely, C.J. (2009). Identification of active ZrWO x clusters on a ZrO2 support for solid acid catalysts. Nat Chem 1(9), 722728.Google Scholar
Zhu, Y., Inada, H., Nakamura, K. & Wall, J. (2009). Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat Mater 8(10), 808812.CrossRefGoogle ScholarPubMed