Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T06:33:55.265Z Has data issue: false hasContentIssue false

Expression of Acute Phase Protein, Glial Fibrillary Acidic Protein, Epithelial Cadherin, and S100 Protein in Brain Tissues from Natural Cases of Ovine Encephalitic Listeriosis

Published online by Cambridge University Press:  24 May 2021

Asmaa F. Khafaga*
Affiliation:
Faculty of Veterinary Medicine, Department of Pathology, Alexandria University, Abbis21944, Egypt
Ibrahim A. Abdullaziz
Affiliation:
Faculty of Veterinary Medicine, Department of Animal Medicine, Alexandria University, Abbis21944, Egypt
Amir H. Abd-Elrahman
Affiliation:
Faculty of Veterinary Medicine, Department of Animal Medicine, Alexandria University, Abbis21944, Egypt
Ibrahim I. Elshahawy
Affiliation:
Faculty of Veterinary Medicine, Department of Animal Medicine, Alexandria University, Abbis21944, Egypt
*
*Author for correspondence: Asmaa F. Khafaga, E-mail: asmaa.khafaga@alexu.edu.eg
Get access

Abstract

Listeriosis is a disease that is induced by infection with the Gram-positive bacterium Listeria monocytogenes. Much is still unknown about the pathogenesis of encephalitic listeriosis. We aimed to identify the contribution of glial fibrillary acidic protein (GFAP), epithelial cadherin (E-cadherin), S100, and acute-phase proteins (APPs) in pathogenesis, clinical and preclinical diagnosis of natural cases of encephalitic listeriosis. Of 1,325 Ossimi sheep, 64 were suspected of having listeriosis from 2018 to 2020. Prospective cohort evaluation of clinical and postmortem findings was performed, in addition to bacterial isolation, the measurement of APPs in serum and cerebrospinal fluid (CSF), and the histopathological and immunohistochemical evaluation of GFAP, S100, and E-cadherin. Infected sheep showed nervous symptoms ranging from neck stretching to complete paralysis. APPs were significantly increased in the CSF of both clinically and preclinically diseased animals; however, serum APPs were only significantly increased in clinically diseased animals. Histopathological evaluation revealed microabscesses, meningoencephalitis, and perivascular cuffing of the brainstem of infected sheep. Immunohistochemical investigations revealed strong expression of GFAP and S100 in necrotic areas and negative expression of E-cadherin. The measurement of CSF APPs could be useful in the preclinical diagnosis of sheep listeriosis. GFAP and S100 proteins could be involved in the pathogenesis of listeriosis; however, E-cadherin does not appear to be involved.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruscato, TJ & Davis, TP (1999). Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: Influence of astrocyte contact. Brain Res 842, 277286.CrossRefGoogle ScholarPubMed
Abdelhak, A, Huss, A, Kassubek, J, Tumani, H & Otto, M (2018). Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep 8(1), 17.CrossRefGoogle ScholarPubMed
Abdulkhaleq, LA, Assi, MA, Abdullah, R, Zamri-Saad, M, Taufiq-Yap, YH & Hezmee, MNM (2018). The crucial roles of inflammatory mediators in inflammation: A review. Vet World 11(5), 627.CrossRefGoogle ScholarPubMed
Bancroft, JD & Gamble, M (2013). The hematoxylin and eosin. In Theory and Practice of Histological Techniques, Suvarna, SK, Layton, C & Bancroft, JD (Eds.), pp. 179220. Edinburgh, NY: Churchill Livingstone.Google Scholar
Bazzoun, D, Lelièvre, S & Talhouk, R (2013). Polarity proteins as regulators of cell junction complexes: Implications for breast cancer. Pharmacol Therapeut 138(3), 418427.CrossRefGoogle ScholarPubMed
Becker, U, Bartl, K & Wahlefed, AW (1984). A functional photometric assay for plasma fibrinogen. Thromb Res 35, 475484.CrossRefGoogle ScholarPubMed
Bhunia, AK (2018). Listeria monocytogenes. In Foodborne Microbial Pathogens. Food Science Text Series. New York: Springer. doi:10.1007/978-1-4939-7349-1_13.CrossRefGoogle Scholar
Bonazzi, M, Lecuit, M & Cossart, P (2009). Listeria monocytogenes internalin and E-cadherin: From structure to pathogenesis. Cellular Microbiology 11(5), 693702.CrossRefGoogle ScholarPubMed
Bundrant, BN, Hutchins, T, den Bakker, HC, Fortes, E & Wiedmann, M (2011). Listeriosis outbreak in dairy cattle caused by an unusual Listeria monocytogenes serotype 4b strain. J Vet Diagn Invest 23, 155158.CrossRefGoogle ScholarPubMed
Calabria, AR & Shusta, EV (2008). A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab 28, 135148.CrossRefGoogle ScholarPubMed
Chen, JQ, Healey, S, Regan, P, Laksanalamai, P & Hu, Z (2017). PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Sci Human Wellness 6(2), 3959.CrossRefGoogle Scholar
Colm, C, David, CW, Delphine, B & Hugh, PV (2005). Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 79, 51745184.Google Scholar
Crilly, JP, Rzechorzek, N & Scott, P (2015). Diagnosing limb paresis and paralysis in sheep. In Pract 37(10), 490507.CrossRefGoogle Scholar
Dando, SJ, Mackay-Sim, A, Norton, R, Currie, BJ, John, JAS, Ekberg, JA, Batzloff, M, Ulett, GC & Beacham, IR (2014). Pathogens penetrating the central nervous system: Infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 27, 691726.CrossRefGoogle ScholarPubMed
Dhama, K, Karthik, K, Tiwari, R, Shabbir, MZ, Barbuddhe, S, Malik, SVS & Singh, RK (2015). Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Vet Quarterly 35(4), 211235.CrossRefGoogle ScholarPubMed
Di Palma, S, Brunetti, B, Doherr, MG, Forster, U, Hilbe, M, Zurbriggen, A, Vandevelde, M & Oevermann, A (2012). Comparative spatiotemporal analysis of the intrathecal immune response in natural listeric rhombencephalitis of cattle and small ruminants. Comp Immunol Microbiol Infect Dis 35, 429441. doi:10.1016/j.cimid.2012.03.009.CrossRefGoogle ScholarPubMed
Disson, O & Lecuit, M (2012). Targeting of the central nervous system by Listeria monocytogenes. Virulence 3, 213221.CrossRefGoogle ScholarPubMed
Drevets, DA & Bronze, MS (2008). Listeria monocytogenes: Epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Medical Microbiol 53, 151165.CrossRefGoogle ScholarPubMed
El-Beskawy, MA, Younis, EE, Soumaya, EA & El-Sawalhy, AA (2010). Epidemiological studies on listeriosis in sheep. Bull Anim Health Production Africa 58(3), 262271.Google Scholar
Engelen-Lee, JY, Koopmans, MM, Brouwer, MC, Aronica, E & van de Beek, D (2018). Histopathology of Listeria meningitis. J Neuropathol Exp Neurol 77(10), 950957.CrossRefGoogle ScholarPubMed
Filippo, PAD, Lannes, ST, Meireles, MA, Nogueira, AF, Ribeiro, LM, Graça, FA & Glória, LS (2018). Acute phase proteins in serum and cerebrospinal fluid in healthy cattle: Possible use for assessment of neurological diseases. Pesq Vet Bras 38(4), 779784.CrossRefGoogle Scholar
Haligur, M, Aydogan, A, Ozmen, O & Ipek, V (2019). Immunohistochemical evaluation of natural cases of encephalitic listeriosis in sheep. Biotech Histochem 94, 341347. doi:10.1080/10520295.2019.1571225.CrossRefGoogle Scholar
Headley, SA, Bodnar, L, Fritzen, JT, Bronkhorst, DE, Alfieri, AF, Okano, W & Alfieri, AA (2013). Histopathological and molecular characterization of encephalitic listeriosis in small ruminants from northern Paraná, Brazil. Braz J Microbiol 44(3), 889896.CrossRefGoogle ScholarPubMed
Heithoff, BP, George, KK, Phares, AN, Zuidhoek, IA, Munoz-Ballester, C & Robel, S (2021). Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain. Glia 69(2), 436472.CrossRefGoogle ScholarPubMed
Hitchins, AD (2001). Chapter 10: Listeria monocytogenes. US Food and Drug Administration's Bacteriological Analytical Manual.Google Scholar
Holzinger, D, Foell, D & Kessel, C (2018). The role of S100 proteins in the pathogenesis and monitoring of autoinflammatory diseases. Mol Cell Pediatr 5(1), 15.CrossRefGoogle ScholarPubMed
Johnson, GC, Fales, WH, Maddox, CW & Ramos-Vara, JA (1995). Evaluation of laboratory tests for confirming the diagnosis of encephalitic listeriosis in ruminants. J Vet Diagn Invest 7, 223228.CrossRefGoogle Scholar
Khafaga, AF, Noreldin, AE & Taha, AE (2019). The adaptogenic anti-ageing potential of resveratrol against heat stress-mediated liver injury in aged rats: Role of HSP70 and NF-kB signalling. J Therm Biol 83, 821.CrossRefGoogle ScholarPubMed
Kumar, H, Singh, BB, Bal, MS, Kaur, K, Singh, R, Sidhu, PK & Sandhu, KS (2007). Pathological and epidemiological investigations into listerial encephalitis in sheep. Small Rum Res 71, 293297.CrossRefGoogle Scholar
Lafrenaye, AD, Mondello, S, Wang, KK, Yang, Z, Povlishock, JT, Gorse, K, Walker, S, Hayes, RL & Kochanek, PM (2020). Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI. Sci Rep 10(1), 117.CrossRefGoogle Scholar
Lee, SE, West, KP Jr, Cole, RN, Schulze, KJ, Christian, P, Wu, LSF, Yager, JD, Groopman, J & Ruczinski, I (2015). Plasma proteome biomarkers of inflammation in school aged children in Nepal. PLoS ONE 10(12), e0144279.CrossRefGoogle Scholar
Le Monnier, A, Abachin, E, Beretti, JL, Berche, P & Kayal, S (2011). Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. Journal of clinical microbiology 49(11), 39173923.CrossRefGoogle ScholarPubMed
Liang, JJ, He, XY & Ye, H (2019). Rhombencephalitis caused by Listeria monocytogenes with hydrocephalus and intracranial hemorrhage: A case report and review of the literature. World J Clin Cases 7, 538547. doi:10.12998/wjcc.v7.i4.538.CrossRefGoogle ScholarPubMed
Madarame, H, Seuberlich, T, Abril, C, Zurbriggen, A, Vandevelde, M & Oevermann, A (2011). The distribution of E-cadherin expression in listeric rhombencephalitis of ruminants indicates its involvement in Listeria monocytogenes neuroinvasion. Neuropathol Appl Neurobiol 37(7), 753767.CrossRefGoogle ScholarPubMed
Marenholz, I, Heizmann, CW & Fritz, G (2004). S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322, 11111122. doi:10.1016/j. bbrc.2004.07.096.CrossRefGoogle Scholar
Maxie, MG & Youssef, S (2007). Nervous system. In Jubb, Kennedy, and Palmer's Pathology of Domestic Animals, Maxie, MG (Ed.), pp. 405408. Philadelphia: Saunders/Elsevier.Google Scholar
Nightingale, KK, Schukken, YH, Nightingale, CR, Fortes, ED, Ho, AJ, Her, Z, Grohn, YT, McDonough, PL & Wiedmann, M (2004). Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. App Environ Microbiol 70, 44584467. doi:10.1128/AEM.70.8.4458-4467.2004.CrossRefGoogle ScholarPubMed
Nirala, NR, Harel, Y, Lellouche, JP & Shtenberg, G (2020). Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. J Nanobiotechnol 18(1), 110.CrossRefGoogle ScholarPubMed
Nishiguchi, S, Yagi, A, Sakai, N & Oda, H (2016). Divergence of structural strategies for homophilic E-cadherin binding among bilaterians. J Cell Sci 129(17), 33093319.Google ScholarPubMed
Oevermann, A, Di Palma, S, Doherr, MG, Abril, C, Zurbriggen, A & Vandevelde, M (2010). Neuropathogenesis of naturally occurring encephalitis caused by Listeria monocytogenes in ruminants. Brain Pathol 20, 378390.CrossRefGoogle ScholarPubMed
Özyıldız, Z, Dinçel, , Terzi, OS, Özsoy, ŞY & Kul, O (2018). Immunohistochemical investigation of the damage to and repair of myelin, and astrocyte activity in small ruminants resulting from with natural meningoencephalitic listeriosis. Vet Fak Derg 65, 283290. doi:10.1501/Vetfak_0000002858.Google Scholar
Pal, D, Audus, KL & Siahaan, TJ (1997). Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res 747, 103113.CrossRefGoogle ScholarPubMed
Piera-Velazquez, S & Jimenez, SA (2019). Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev 99(2), 12811324.CrossRefGoogle ScholarPubMed
Pietzsch, J (2011). S100 proteins in health and disease. Amino Acids 41, 755760. doi:10.1007/s00726-010-0570-y.CrossRefGoogle ScholarPubMed
Pizarro-Cerdá, J, Kühbacher, A & Cossart, P (2012). Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold Spring Harb Perspect Med 2(11), a010009.CrossRefGoogle Scholar
Rissi, DR, Rech, RR, Barros, RR, Kommers, GD, Langohr, IM, Pierezan, F & Barros, SL (2006). Listeric meningoencephalitis in goats. Pesq Vet Bras 26, 1420.CrossRefGoogle Scholar
Salimi, H & Klein, RS (2019. Disruption of the blood-brain barrier during neuroinflammatory and neuroinfectious diseases. In Neuroimmune Diseases, Mitoma, H & Manto, M (Eds.), pp. 195234. Cham: Springer.CrossRefGoogle Scholar
SAS (2002). Statistical Aanalysis System, Version 9. SAS Institute Inc, Cary.Google Scholar
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.CrossRefGoogle ScholarPubMed
Sorci, G, Riuzzi, F, Arcuri, C, Tubaro, C, Bianchi, R, Giambanco, I & Donato, R (2013). S100b protein in tissue development, repair and regeneration. World J Biol Chem 4, 112. doi:10.4331/wjbc.v4.i1.1.CrossRefGoogle Scholar
Steel, D & Whitehead, S (1993). The acute phase response. In Humoral Factors, Sim, E (Ed.), p. 373. Oxford, UK: Oxford University Press.Google Scholar
Torresi, M, Ruolo, A, Acciari, VA, Ancora, M, Blasi, G, Cammà, C, Centorame, P, Centorotola, G, Curini, V, Guidi, F & Marcacci, M (2020). A real-time PCR screening assay for rapid detection of Listeria monocytogenes outbreak strains. Foods 9(1), 67.CrossRefGoogle ScholarPubMed
Van Horssen, J, Brink, BP, de Vries, HE, van der Valk, P & , L (2007). The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66, 321328. doi:10.1097/nen.0b013e318040b2de.CrossRefGoogle ScholarPubMed
Wang, X, Dong, B, Zhang, K, Ji, Z, Cheng, C, Zhao, H, Sheng, Y, Li, X, Fan, L, Xue, W & Gao, WQ (2018). E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genetics 14(8). e1007609.CrossRefGoogle ScholarPubMed
Wei, P, Bao, R & Fan, Y (2020). Brainstem encephalitis caused by Listeria monocytogenes. Pathogens 9, 715.CrossRefGoogle ScholarPubMed
Xia, C, Braunstein, Z, Toomey, AC, Zhong, J & Rao, X (2018). S100 proteins as an important regulator of macrophage inflammation. Front Immunol 8, 1908.CrossRefGoogle ScholarPubMed
Yang, Z & Wang, KK (2015). Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38(6), 364374.CrossRefGoogle ScholarPubMed
Zachary, JF (2012). Listeriosis. In: Pathologic Basis of Veterinary Disease, Zachary, JF & McGavin, MD (Eds.), pp. 192195. St. Louis, Missouri: Elsevier/Mosby.Google Scholar
Supplementary material: Image

Khafaga et al. supplementary material

Khafaga et al. supplementary material

Download Khafaga et al. supplementary material(Image)
Image 6.3 MB