Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T03:58:04.964Z Has data issue: false hasContentIssue false

Exceeding Conventional Resolution Limits in High-Resolution Transmission Electron Microscopy Using Tilted Illumination and Exit-Wave Restoration

Published online by Cambridge University Press:  06 July 2010

Sarah J. Haigh
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
Hidetaka Sawada
Affiliation:
JEOL Ltd., 1-2 Musashino 3-Chome, Akishima, Tokyo 196-8558, Japan
Kunio Takayanagi
Affiliation:
Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
Angus I. Kirkland*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
*
Corresponding author. E-mail: angus.kirkland@materials.ox.ac.uk
Get access

Abstract

Tilted illumination exit-wave restoration is compared for two aberration-corrected instruments at different accelerating voltages. The experimental progress of this technique is also reviewed and the significance of off-axial aberrations examined. Finally, the importance of higher order aberration compensation combined with careful correction of the lower order aberrations is highlighted.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buseck, P., Cowley, J. & Eyring, L. (1989). High Resolution Transmission Electron Microscopy and Related Techniques. Oxford: Oxford University Press.Google Scholar
Coene, W., Janssen, G., Op de Beeck, M. & van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.CrossRefGoogle ScholarPubMed
Coene, W.M.J., Thust, A., Op de Beeck, M. & van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.CrossRefGoogle Scholar
Gontard, L.C., Chang, L.Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D. & Dunin-Borkowski, R.E. (2007). Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46, 36833685.CrossRefGoogle ScholarPubMed
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Haigh, S.J., Sawada, H. & Kirkland, A.I. (2009a). Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12), 126101–4.CrossRefGoogle ScholarPubMed
Haigh, S.J., Sawada, H. & Kirkland, A.I. (2009b). Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Phil Trans R Soc A 367(1903), 37553771.CrossRefGoogle ScholarPubMed
Hartel, P., Muller, H., Uhlemann, S. & Haider, M. (2007). Experimental set-up of an advanced hexapole Cs-corrector. Microsc Microanal 13(S2), 11481149.CrossRefGoogle Scholar
Hetherington, C.J.D., Chang, L.Y., Haigh, S., Nellist, P.D., Gontard, L.C., Dunin-Borkowski, R.E. & Kirkland, A.I. (2008). High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14, 6067.CrossRefGoogle ScholarPubMed
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I. & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.CrossRefGoogle ScholarPubMed
Kirkland, A., Meyer, R. & Chang, L. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.CrossRefGoogle ScholarPubMed
Kirkland, A.I., Saxton, W.O. & Chand, G. (1997). Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 1, 1122.CrossRefGoogle Scholar
Kirkland, A.I., Saxton, W.O., Chau, K.L., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM. Ultramicroscopy 57, 355374.CrossRefGoogle Scholar
Meyer, R. (2002). Quantitative automated object wave restoration in high resolution electron microscopy. PhD Thesis. Dresden Technical University.Google Scholar
Meyer, R.R. & Kirkland, A.I. (2000). Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Techniq 49, 269280.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E. & Hutchison, J.L. (2000). Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85, 913.CrossRefGoogle Scholar
Meyer, R., Kirkland, A. & Saxton, W. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric abberations. Ultramicroscopy 92, 89109.CrossRefGoogle Scholar
Meyer, R., Kirkland, A. & Saxton, W. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of the antisymmetric abberations. Ultramicroscopy 99, 115123.CrossRefGoogle Scholar
Nellist, P.D., McCallum, B.C. & Rodenburg, J.M. (1995). Resolution beyond the information limit in transmission electron microscopy. Nature 374, 630632.CrossRefGoogle Scholar
Op de Beeck, M., van Dyck, D. & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy 64, 167183.CrossRefGoogle Scholar
Rodenburg, J.M. & Bates, R.H.T. (1992). The theory of superresolution electron-microscopy via Wigner-distribution deconvolution. Phil Trans R Soc Lond A 339, 521553.Google Scholar
Ryle, M. (1972). The 5-km radio telescope at Cambridge. Nature 239, 435438.CrossRefGoogle Scholar
Ryle, M. & Vonberg, D. (1946). Solar radiation on 175Mc/s—Observations from the first multi-element astronomical radio interferometer. Nat Mater 158, 339340.Google Scholar
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y. & Takayanagi, K. (2009). STEM imaging of 47pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J Electron Microsc 56, 357361.CrossRefGoogle Scholar
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Image and Signal Processing in Electron Microscopy, Proc 6th Pfefferkorn Conf, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago, IL: Scanning Microscopy International.Google Scholar
Shearman, E.D.R. & Clarke, J. (1968). Aperture synthesis in ionospheric radar. Nature 219, 143144.CrossRefGoogle Scholar
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.CrossRefGoogle Scholar
Smith, D.J., Saxton, W., O'Keefe, M., Wood, G. & Stobbs, W. (1983). The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11, 263281.CrossRefGoogle Scholar
Spence, J. (1999). The future of atomic resolution electron microscopy for materials science. Mater Sci Eng 26, 149.CrossRefGoogle Scholar
Spence, J. (2002). High Resolution Electron Microscopy, 3rd Ed.Oxford: Oxford University Press.Google Scholar
Thust, A., Coene, W., Op de Beeck, M. & van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.CrossRefGoogle Scholar
Thust, A., Overwijk, M., Coene, W. & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase retrieval HRTEM. Ultramicroscopy 64, 249264.CrossRefGoogle Scholar
Tillmann, K., Thust, A. & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.CrossRefGoogle Scholar
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.CrossRefGoogle Scholar
van Dyck, D., Op de Beeck, M. & Coene, W. (1993). A new approach to object wave-function reconstruction in electron-microscopy. Optik 93, 103107.Google Scholar
van Tendeloo, G. (1998). High resolution electron microscopy in materials research. J Mater Chem 8, 797808.CrossRefGoogle Scholar
Zandbergen, H.W. & van Dyck, D. (2000). Exit wave reconstructions using through focus series of HREM images. Microsc Res Tech 49, 301323.3.0.CO;2-R>CrossRefGoogle ScholarPubMed