Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T17:58:44.297Z Has data issue: false hasContentIssue false

EELS of Niobium and Stoichiometric Niobium-Oxide Phases—Part II: Quantification

Published online by Cambridge University Press:  26 October 2009

David Bach*
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Reinhard Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
*
Corresponding author. E-mail: bach@lem.uni-karlsruhe.de
Get access

Abstract

A comprehensive electron energy-loss spectroscopy (EELS) study of niobium (Nb) and stable Nb-oxide phases (NbO, NbO2, Nb2O5) was carried out. Part II of this work is devoted to quantitative EELS by means of experimental k-factors derived from the intensity ratio of the O-K edge and the Nb-M4,5 or Nb-M2,3 edges for all three stable Nb-oxides. The precision and accuracy of the quantification are investigated with respect to the influence of intensity-measurement energy windows, background subtraction, and sample thickness. Integration-window widths allowing optimum accuracy are determined. Owing to background-subtraction errors, the Nb-M4,5 edges rather than Nb-M2,3 are preferred for quantification. Different approaches are applied to improve the precision with regard to thickness-related errors. Thus, a precision up to ±1.5% is achieved by averaging spectra from all three reference oxides to determine a k-factor using Nb-M4,5. Using the experimental k-factor, the determination of atomic concentration ratios CNb/CO in the range of 0.4 (Nb2O5) to 1 (NbO) was found to be possible with an accuracy of 0.6% (relative deviation between measured and nominal composition), whereas ratios of calculated partial ionization cross sections lead to less accurate results.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, C. & Rez, P. (1985). Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy 17, 105116.Google Scholar
Auerhammer, J., Rez, P. & Hofer, F. (1989). A comparison of theoretical and experimental L and M cross sections. Ultramicroscopy 30, 365370.Google Scholar
Bach, D., Schneider, R., Gerthsen, D., Verbeeck, J. & Sigle, W. (2009). EELS of niobium and stoichiometric niobium-oxide phases—Part I: Plasmon and near-edges fine structure. Microsc Microanal 15, 505523 (this issue).Google Scholar
Bach, D., Störmer, H., Schneider, R., Gerthsen, D. & Verbeeck, J. (2006). EELS investigations of different niobium oxide phases. Microsc Microanal 12, 416423.CrossRefGoogle ScholarPubMed
Bertoni, G. & Verbeeck, J. (2008). Accuracy and precision in model based EELS quantification. Ultramicroscopy 108, 782790.CrossRefGoogle ScholarPubMed
Bruley, J., Williams, D.B., Cuomo, J.J. & Pappas, D.P. (1995). Quantitative near-edge structure analysis of diamond-like carbon in the electron microscope using two-window method. J Microsc 180, 2232.Google Scholar
Brydson, R. (1991). Interpretation of near-edge structure in the electron energy-loss spectrum. EMSA Bull 21, 5767.Google Scholar
Brydson, R. (2001). Electron Energy Loss Spectroscopy. Oxford, UK: BIOS Scientific Publishers Ltd.Google Scholar
Egerton, R.F. (1978). Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243251.CrossRefGoogle ScholarPubMed
Egerton, R.F. (1979). K-shell ionization cross-sections for use in microanalysis. Ultramicroscopy 4, 169179.Google Scholar
Egerton, R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Fix, T., Ulhaq-Bouillet, C., Colis, S., Dinia, A., Bertoni, G., Verbeeck, J. & Van Tendeloo, G. (2007). Nanoscale analysis of interfaces in a metal/oxide/oxide trilayer obtained by pulsed laser deposition. Appl Phys Lett 91, 023106.CrossRefGoogle Scholar
Gmelin. (1970). Gmelin Handbuch der Anorganischen Chemie, Niob, Teil B1. Weinheim, Germany: Verlag Chemie GmbH.Google Scholar
Hanada, N., Ichikawa, T. & Fujii, H. (2007). Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide. J Alloy Compd 446-447, 6771.CrossRefGoogle Scholar
Heusing, S., Sun, D.L., Otero-Anaya, J. & Aegerter, M.A. (2006). Grey, brown and blue coloring sol-gel electrochromic devices. Thin Solid Films 502, 240245.Google Scholar
Hofer, F. (1991). Determination of inner-shell cross-sections for EELS-quantification. Microsc Microanal Microstruct 2, 215230.Google Scholar
Hofer, F. & Golob, P. (1988). Quantification of electron energy-loss spectra with K and L shell ionization cross-sections. Micron Microsc Acta 19, 7386.CrossRefGoogle Scholar
Hofer, F., Golob, P. & Brunegger, A. (1988). EELS quantification of the elements Sr to W by means of M45 edges. Ultramicroscopy 25, 8184.Google Scholar
Hofer, F. & Kothleitner, G. (1993). Quantitative microanalysis using electron energy-loss spectroscopy: I. Li and Be in oxides. Microsc Microanal Microstruct 4, 539560.CrossRefGoogle Scholar
Hofer, F. & Kothleitner, G. (1996). Quantitative microanalysis using electron energy-loss spectroscopy: II. Compounds with heavier elements. Microsc Microanal Microstruct 7, 265277.CrossRefGoogle Scholar
Hofer, F., Kothleitner, G. & Rez, P. (1996). Ionization cross-sections for the L23-edges of the elements Sr to Mo for quantitative EELS analysis. Ultramicroscopy 63, 239245.CrossRefGoogle Scholar
Keast, V.J., Scott, A.J., Brydson, R., Williams, D.B. & Bruley, J. (2001). Electron energy-loss near-edge structure—A tool for the investigation of electronic structure on the nanometre scale. J Microsc 203, 135175.CrossRefGoogle ScholarPubMed
Leapman, R.D., Rez, P. & Mayers, D.F. (1980). K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions. J Chem Phys 72, 12321243.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Micr Tech 8, 193200.CrossRefGoogle ScholarPubMed
Malis, T. & Titchmarsh, J.M. (1986). “k-kactor” approach to EELS analysis. In Electron Microscopy and Analysis 1985, pp. 181182. Bristol, UK: Institute of Physics.Google Scholar
Olszta, M.J. & Dickey, E.C. (2008). Interface stoichiometry and structure in anodic niobium pentoxide. Microsc Microanal 14, 451458.Google Scholar
Olszta, M.J., Wang, J. & Dickey, E.C. (2006). Stoichiometry and valence measurements of niobium oxides using electron energy-loss spectroscopy. J Microsc 224, 233241.Google Scholar
Qiu, Y., Smyth, D. & Kimmel, J. (2002). The stabilization of niobium-based solid electrolyte capacitors. Active and Passive Electr Comp 25, 201209.CrossRefGoogle Scholar
Rez, P. (1982). Cross-sections for energy loss spectrometry. Ultramicroscopy 9, 283288.CrossRefGoogle Scholar
Rho, S., Jahng, D., Lim, J.H., Choi, J., Chang, J.H., Lee, S.C. & Kim, K.J. (2008). Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide. Biosens Bioelectron 23, 852856.Google Scholar
Sasaki, K., Zhang, L. & Adzic, R.R. (2008). Niobium oxide supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10, 159167.CrossRefGoogle ScholarPubMed