Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T03:09:02.580Z Has data issue: false hasContentIssue false

Design and Application of a Novel In Situ Nano-Manipulation Stage for Transmission Electron Microscopy

Published online by Cambridge University Press:  17 March 2015

Bon-Woong Koo
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Seung-Pyo Hong
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Seong-Il Kim
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Chan S. Kang
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Sang-Sub Han
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Kyu H. Oh
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
Young-Woon Kim*
Affiliation:
Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 151-744, Republic of Korea
*
*Corresponding author. youngwk@snu.ac.kr
Get access

Abstract

A novel nano-scale manipulator capable of handling low-dimensional materials with three-dimensional linear motion, gripping action, and push–pull action of the gripper was developed for an in situ experiment in transmission electron microscopy. X-Y-Z positioning and push–pull action were accomplished by a piezotubing system, combined with a specially designed assembly stage that consisted of a lever-action gripping tip backed by a push–pull piezostack. The gripper tip consisted of tungsten wire fabricated by electrochemical etching followed by a focused ion beam process. Performance of the nano-scale manipulator was demonstrated in a grab-and-pick test of a single silver nanowire and in an in situ tensile test of a pearlitic steel sample with a specific orientation.

Type
Equipment Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, M. & Nosaka, T. (2001). Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl Phys Lett 79(11), 16911693.Google Scholar
Andersen, K.N., Petersen, D.H., Carlson, K., Molhave, K., Sardan, O., Horsewell, A., Eichhorn, V., Fatikow, S. & Boggild, P. (2009). Multimodal electrothermal silicon microgrippers for nanotube manipulation. IEEE Trans Nanotechnol 8(1), 7685.Google Scholar
Blideran, M.M., Bertsche, G., Henschel, W. & Kern, D.P. (2006a). A mechanically actuated silicon microgripper for handling micro- and nanoparticles. Microelectron Eng 83(4–9), 13821385.CrossRefGoogle Scholar
Blideran, M.M., Fleischer, M., Henschel, W., Kern, D.P., Sterr, J., Schock, K., Kleindiek, S., Langer, M.G., Loffler, K. & Grauvogel, F. (2006b). Characterization and operation of a mechanically actuated silicon microgripper. J Vac Sci Technol B 24(6), 32393243.Google Scholar
Boggild, P., Hansen, T.M., Tanasa, C. & Grey, F. (2001). Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology 12(3), 331335.Google Scholar
Briston, K.J., Cullis, A.G. & Inkson, B.J. (2010). Fabrication of a novel SEM microgripper by electrochemical and FIB techniques. J Micromech Microeng 20(1), 015028015032.Google Scholar
Carrozza, M.C., Eisinberg, A., Menciassi, A., Campolo, D., Micera, S. & Dario, P. (2000). Towards a force-controlled microgripper for assembling biomedical microdevices. J Micromech Microeng 10(2), 271276.Google Scholar
Cavallini, M. & Biscarini, F. (2000). Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy. Rev Sci Instrum 71(12), 44574460.Google Scholar
Chang, J.Y., Min, B.K., Kim, J., Lee, S.J. & Lin, L.W. (2009). Electrostatically actuated carbon nanowire nanotweezers. Smart Mater Struct 18(6), 065017065023.CrossRefGoogle Scholar
Chen, B.K., Zhang, Y., Perovic, D.D. & Sun, Y. (2011). MEMS microgrippers with thin gripping tips. J Micromech Microeng 21(10), 105004105008.Google Scholar
Chen, B.K., Zhang, Y. & Sun, Y. (2009). Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J Microelectromech Sys 18(3), 652659.CrossRefGoogle Scholar
Choi, H.S., Lee, D.C., Kim, S.S. & Han, C.S. (2005). The development of a microgripper with a perturbation-based configuration design method. J Micromech Microeng 15(6), 13271333.Google Scholar
Clevy, C., Hubert, A., Agnus, J. & Chaillet, N. (2005). A micromanipulation cell including a tool changer. J Micromech Microeng 15(10), S292S301.Google Scholar
Deutschinger, A., Schmid, U., Schneider, M., Brenner, W., Wanzenbock, H., Volland, B., Ivanov, T. & Rangelow, I.W. (2010). Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique. Microsyst Technol 16(11), 19011908.Google Scholar
Fahlbusch, S., Mazerolle, S., Breguet, J.M., Steinecker, A., Agnus, J., Perez, R. & Michler, J. (2005). Nanomanipulation in a scanning electron microscope. J Mater Process Technol 167(2–3), 371382.Google Scholar
Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J. & Zettl, A. (2003). Rotational actuators based on carbon nanotubes. Nature 424(6947), 408410.CrossRefGoogle ScholarPubMed
Goldfarb, M. & Celanovic, N. (1999). A flexure-based gripper for small-scale manipulation. Robotica 17, 181187.Google Scholar
Haque, M.A. & Saif, M.T.A. (2002). Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens Actuators A Phys 97–98, 239245.CrossRefGoogle Scholar
Haque, M.A. & Saif, M.T.A. (2005). In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7), 17691777.Google Scholar
Huang, S.C., Lee, C.M., Chiu, C.C. & Chen, W.L. (2006). Topology optimal compliant microgripper. JSME Int J Ser A 49(4), 589596.CrossRefGoogle Scholar
Jayaram, K. & Joshi, S.S. (2010). Development of a flexure-based, force-sensing microgripper for micro-object manipulation. J Micromech Microeng 20, 015001015010.Google Scholar
Jericho, S.K., Jericho, M.H., Hubbard, T. & Kujath, M. (2004). Micro-electro-mechanical systems microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75(5), 12801282.CrossRefGoogle Scholar
Kim, B., Park, J.S., Moon, C., Jeong, G.M. & Ahn, H.S. (2008). A precision robot system with modular actuators and MEMS micro gripper for micro system assembly. J Mech Sci Technol 22(1), 7076.Google Scholar
Kim, D.H., Lee, M.G., Kim, B. & Sun, Y. (2005). A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6), 12651272.CrossRefGoogle Scholar
Kim, P. & Lieber, C.M. (1999). Nanotube nanotweezers. Science 286(5447), 21482150.Google Scholar
Kim, Y.-W., Ko, D.-S., Kim, S.-D., Li, X., Park, G., Kim, Y. & Park, C. (2007). In-situ observation of structural change and failure detection for electrically active devices in TEM. Microsc Microanal 13(Suppl S02), 808809.Google Scholar
Kiuchi, M., Matsui, S. & Isono, Y. (2007). Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated nano tensile testing device. J Microelectromech Syst 16(2), 191201.CrossRefGoogle Scholar
Kizuka, T., Umehara, S. & Fujisawa, S. (2001). Metal-insulator transition in stable one-dimensional arrangements of single gold atoms. Jpn J Appl Phy 40(1ab, Pt 2), L71L74.Google Scholar
Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. (1997). Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys Rev B 55(12), R7398R7401.Google Scholar
Koo, B.W., Chang, Y.J., Hong, S.P., Kang, C.S., Jeong, S.W., Nam, W.J., Park, I.J., Lee, Y.K., Oh, K.H. & Kim, Y.W. (2014). Experimental measurement of Young’s modulus from a single crystalline cementite. Scripta Mater 82, 2528.Google Scholar
Kyung, J.H., Ko, B.G., Ha, Y.H. & Chung, G.J. (2008). Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sens Actuators A Phys 141(1), 144150.Google Scholar
Li, N., Wang, H., Misra, A. & Wang, J. (2014). In situ nanoindentation study of plastic co-deformation in Al-TiN nanocomposites. Sci Rep 4, 66336638.Google Scholar
Menciassi, A., Eisinberg, A., Carrozza, M.C. & Dario, P. (2003). Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE ASME Trans Mechatron 8(1), 1017.Google Scholar
Molhave, K. & Hansen, O. (2005). Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6), 12651270.CrossRefGoogle Scholar
Nah, S.K. & Zhong, Z.W. (2007). A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133(1), 218224.Google Scholar
Nakayama, Y. (2002). Scanning probe microscopy installed with nanotube probes and nanotube tweezers. Ultramicroscopy 91(1–4), 4956.Google Scholar
Nguyen, N.T., Ho, S.S. & Low, C.L.N. (2004). A polymeric microgripper with integrated thermal actuators. J Micromech Microeng 14(7), 969974.Google Scholar
Panepucci, R.R. & Martinez, J.A. (2008). Novel SU-8 optical waveguide microgripper for simultaneous micromanipulation and optical detection. J Vac Sci Technol B 26(6), 26242627.Google Scholar
Perez, R., Agnus, J., Clevy, C., Hubert, A. & Chaillet, N. (2005). Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation. IEEE ASME Trans Mechatron 10(2), 161171.Google Scholar
Raghavendra, M.R.A., Kumar, A.S. & Jagdish, B.N. (2010). Design and analysis of flexure-hinge parameter in microgripper. Int J Adv Manuf Technol 49(9–12), 11851193.Google Scholar
Roch, I., Bidaud, P., Collard, D. & Buchaillot, L. (2003). Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 13(2), 330336.Google Scholar
Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O. & Boggild, P. (2008). Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19, 495503495511.Google Scholar
Solano, B. & Wood, D. (2007). Design and testing of a polymeric microgripper for cell manipulation. Microelectron Eng 84(5–8), 12191222.CrossRefGoogle Scholar
Svensson, K., Jompol, Y., Olin, H. & Olsson, E. (2003). Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instrum 74(11), 49454947.Google Scholar
Wang, Z.L. (2004). Properties of nanobelts and nanotubes measured by in situ TEM. Microsc Microanal 10(1), 158166.Google Scholar
Wong, E.W., Sheehan, P.E. & Lieber, C.M. (1997). Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 19711975.CrossRefGoogle Scholar
Yamahata, C., Collard, D., Legrand, B., Takekawa, T., Kunternura, M., Hashiguchi, G. & Fujita, H. (2008). Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules. J Microelectromech Syst 17(3), 623631.Google Scholar
Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. & Ruoff, R.S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637640.Google Scholar
Zubir, M.N.M., Shirinzadeh, B. & Tian, Y.L. (2009). Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens Actuators A Phys 150(2), 257266.Google Scholar
Supplementary material: File

Koo supplementary material S1

Koo supplementary material S1

Download Koo supplementary material S1(File)
File 16.5 KB

Koo supplementary material S2

Video

Download Koo supplementary material S2(Video)
Video 2.2 MB

Koo supplementary material S3

Video

Download Koo supplementary material S3(Video)
Video 2 MB