Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T17:30:35.113Z Has data issue: false hasContentIssue false

Defect and Interfacial Structure of Heteroepitaxial Fe3O4/BaTiO3 Bilayers

Published online by Cambridge University Press:  09 April 2010

Sujing Xie*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA
George E. Sterbinsky
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA
Bruce W. Wessels
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA
Vinayak P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA
*
Corresponding author. E-mail: sujingxie@gmail.com
Get access

Abstract

The defect and interfacial structure in a Fe3O4/BaTiO3 heteroepitaxial bilayer was investigated by scanning transmission electron microscopy. The results show that the Fe3O4 film grew epitaxially on BaTiO3. The orientation relationship between Fe3O4, BaTiO3 and MgO is [100]Fe3O4//[100]BaTi3O//[100]MgO and (010)Fe3O4//(010)BaTiO3//(010)MgO. An initial interfacial nucleation layer was formed that partially accommodated the lattice mismatch strain between BaTiO3 and MgO. This investigation indicates that the formation of this buffer layer provides a high-quality BaTiO3 surface for subsequent Fe3O4 growth, resulting in a semicoherent interface. The Fe3O4 surface is nearly atomically abrupt (roughness Rrms = 0.78 nm). The Fe3O4 film exhibits magnetic domains with a diameter in the range of 0.4–2 μm.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amano, H., Sawaski, N., Akasaki, I. & Toyoda, Y. (1986). Metalorganic vapor-phase epitaxial-growth of a high-quality GaN film using an AlN buffer layer. Appl Phys Lett 48, 353355.CrossRefGoogle Scholar
Cheng, J., Sterbinsky, G.E. & Wessels, B.W. (2008). Magnetic and magneto-optical properties of heteroepitaxial magnetite thin films. J Crystal Growth 310, 37303734.CrossRefGoogle Scholar
Dhote, A.M., Meier, A.L., Towner, D.J., Wessels, B.W., Ni, J. & Marks, T.J. (2005). Low temperature deposition of epitaxial BaTiO3 films in a rotating disk vertical MOCVD reactor. J Vac Sci Technol 23, 16741678.CrossRefGoogle Scholar
Eibl, O., Pongratz, P. & Skalicky, P. (1988). Crystallography of (111) twins in BaTiO3. Phil Mag B 57, 521534.CrossRefGoogle Scholar
Ellis, D.E., Tubman, N.M. & Wells, D.M. (2007). Theoretical modeling of bifunctional multilayer systems. Hyperfine Interactions 179, 2332.Google Scholar
Hill, N.A. (2000). Why are there so few magnetic ferroelectrics. J Phys Chem B 104, 66946709.CrossRefGoogle Scholar
Jia, C.L., Siegert, M. & Urban, K. (2001). The structure of the interface between BaTiO3 thin films and MgO substrates. Acta Mater 49, 27832789.CrossRefGoogle Scholar
Jia, C.L., Urban, K., Mertin, M., Hoffmann, S. & Waser, R. (1998). The structure and formation of nanotwins in BaTiO3 thin films. Phil Mag A 77, 923939.Google Scholar
Prellier, W., Singh, M.P. & Murugavel, P. (2005). The single-phase multiferroic oxides: From bulk to thin film. J Phys Cond Mat 17, R803R832.Google Scholar
Ramesh, R. & Spaldin, N.A. (2007). Multiferroics: Progress and prospects in thin films. Nat Mater 6, 2129.CrossRefGoogle ScholarPubMed
Soga, T., Imori, T., Umeno, M. & Hattori, S. (1987). Stress and strain of GaAs on Si grown by MOCVD using strained superlattice intermediate layers and a 2-step growth method. Jpn J Appl Phys 26, L536L538.CrossRefGoogle Scholar
Sterbinsky, G.E., Cheng, J., Chiu, P.T. & Wessels, B.W. (2007). Investigation of heteroepitaxial growth of magnetite thin films. J Vac Sci Technol B 25, 13891392.CrossRefGoogle Scholar
Terai, K., Lippmaa, M., Ahmet, P., Chikyow, T., Fuji, T., Koinuma, H. & Kawasaki, M. (2002). In-plane lattice constant tuning of an oxide substrate with Ba1−xSrxTiO3 and BaTiO3 buffer layers. Appl Phys Lett 80, 44374439.CrossRefGoogle Scholar
Tian, H.F., Qu, T.L., Luo, L.B., Yang, J.J., Guo, S.M., Zhang, H.Y., Zhao, Y.G. & Li, J.Q. (2008). Strain induced magnetoelectric coupling between magnetite and BaTiO3. Appl Phys Lett 92, 063507.Google Scholar
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. & Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 17191722.CrossRefGoogle ScholarPubMed
Wu, J.S., Jia, C.L. & Urban, K. (2002). Propagation and interaction of {111} planar defects in the SrRuO3 buffer layer in SrTiO3/SrRuO3 two-layer films on LaAlO3 substrates. Phil Mag A 82, 6580.Google Scholar
Xie, S., Cheng, J., Wessels, B.W. & Dravid, V.P. (2008). Interfacial structure and chemistry of epitaxial CoFe2O4 thin films on SrTiO3 and MgO substrates. Appl Phys Lett 93, 181901.Google Scholar
Yamada, T., Astafiev, K.F., Sherman, V.O., Tagantsev, A.K., Muralt, P. & Setter, N. (2005). Strain relaxation of epitaxial SrTiO3 thin films on LaAlO3 by two-step growth technique. Appl Phys Lett 86, 142904.Google Scholar
Zhao, Y.P., Gamache, R.M., Wang, G.C. & Lu, T.M. (2001). Effect of surface roughness on magnetic domain wall thickness, domain size and coercivity. J Appl Phys 89, 13251330.CrossRefGoogle Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A. & Ramesh, R. (2004). Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 303, 661663.CrossRefGoogle Scholar