No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
Recent data suggests that reactive oxygen species (ROS) play a role in the progression of atherosclerosis. Superoxide (O2˙−) and its free radical metabolites can participate in the oxidation of LDLs, activation of proto-oncogenes and promotion of cellular growth. Endothelial and vascular smooth muscle cells are capable of producing O2˙− and other ROS. A major source of O2˙- and other reactive ROS in vascular tissues is a membrane associated NADH oxidase. This paper presents a study of NADH oxidase by cytochemical localization in developing atheromas in a rabbit model of diet-induced atherosclerosis.
NADH oxidase generates O2˙− which dismutates to hydrogen peroxide (H2O2). Cerium perhydroxide, an electron dense precipitate of cerium and H2O2, is the reaction product of NADH oxidase. Cytochemical localization of NADH oxidase was done by the cerium method in developing atheromas in abdominal aorta and iliac arteries of New Zealand rabbits made atherosclerotic by feeding a diet of 0.2% cholesterol/5% peanut oil over four months.