Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T22:05:04.837Z Has data issue: false hasContentIssue false

Composition Fluctuation of In and Well-Width Fluctuation in InGaN/GaN Multiple Quantum Wells in Light-Emitting Diode Devices

Published online by Cambridge University Press:  06 August 2013

Gil Ho Gu
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, SouthKorea
Dong Hyun Jang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, SouthKorea
Ki Bum Nam
Affiliation:
Characterization & Analysis Lab, Seoul Opto Device Co., Ansan, 425-851, Korea
Chan Gyung Park*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, SouthKorea National Center for Nanomaterials Technology (NCNT), Pohang, Kyungbuk 790-784, SouthKorea
*
*Corresponding author. E-mail: cgpark@postech.ac.kr
Get access

Abstract

In this paper, we have observed an atomic-scale structure and compositional variation at the interface of the InGaN/GaN multi-quantum wells (MQW) by both scanning transmission electron microscopy (STEM) using high-angle annular dark-field mode and atom probe tomography (APT). The iso-concentration analysis of APT results revealed that the roughness of InGaN/GaN interface increased as the MQW layers were filled up, and that the upper interface of MQW (GaN/InGaN to the p-GaN side) was much rougher than that of the lower interface (InGaN/GaN tot he n-GaN side). On the basis of experimental results, it is suggested that the formation of interface roughness can affect the quantum efficiency of InGaN-based light-emitting diodes.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, O., Waltereit, P., Jahn, U., Dhar, S. & Ploog, K.H. (2002). Impact of In bulk and surface segregation on the optical properties of (In, Ga) N/GaN multiple quantum wells. Physica Status Solidi A 192(1), 513.Google Scholar
Cheng, Y.C., Lin, E.C., Wu, C.M., Yang, C.C., Yang, J., Rosenauer, R.A., Ma, K.J., Shi, S.C., Chen, L.C. & Pan, C.C. (2004). Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions. Appl Phys Lett 84, 25062508.Google Scholar
Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Clifton, P.H., Larson, D., Saxey, D.W. & Cerezo, A. (2008). Three-dimensional atom probe analysis of green-and blue-emitting InxGa1-xN/GaN multiple quantum well structures. J Appl Phys 104(1), 013524013527.Google Scholar
Graham, D.M., Soltani-Vala, A., Dawson, P., Godfrey, M.J., Smeeton, T.M., Barnard, J.S., Kappers, M.J., Humphreys, C.J. & Thrush, E.J. (2005). Optical and microstructural studies of InGaN/GaN single-quantum-well structures. J Appl Phys 97, 103508.Google Scholar
Grandjean, N., Damilano, B. & Massies, J. (2001). Group-III nitride quantum heterostructures grown by molecular beam epitaxy. J Phys: Condens Matter 13, 6945.Google Scholar
Gu, G.H., Park, C.G. & Nam, K.B. (2009). Inhomogeneity of a highly efficient InGaN based blue LED studied by three dimensional atom probe tomography. Physica Status Solidi (RRL)-Rapid Res Lett 3(4), 100102.Google Scholar
Jinschek, J.R., Erni, R., Gardner, N.F., Kim, A.Y. & Kisielowski, C. (2006). Local indium segregation and bang gap variations in high efficiency green light emitting InGaN/GaN diodes. Solid State Commun 137(4), 230234.Google Scholar
Lu, I.L., Wu, Y.R. & Singh, J. (2010). A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method. J Appl Phys 108, 124508.Google Scholar
Miller, M.K. (1986). Atom probe field ion microscopy. Annual joint meeting of the Electron Microscopy Society of America and the Microbeam Analysis Society.Google Scholar
Nakamura, S., Senoh, M., Iwasa, N. & Nagahama, S. (1995). High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys Part 2 Lett 34, 797799.Google Scholar
Nakamura, S., Senoh, M., Nagahama, S.I., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. & Sugimoto, Y. (1996). InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys 35(1B), L74L76.Google Scholar
Narayan, J., Wang, H., Ye, J., Hon, S.J., Fox, K., Chen, J.C., Choi, H.K. & Fan, J.C.C. (2002). Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes. Appl Phys Lett 81, 841843.Google Scholar
Northrup, J.E. & Van de Walle, C.G. (2004). Indium versus hydrogen-terminated GaN (0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment. Appl Phys Lett 84, 43224324.Google Scholar
O'Neill, J.P., Ross, I.M., Cullis, A.G., Wang, T. & Parbrook, P.J. (2003). Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells. Appl Phys Lett 83(10), 19651967.Google Scholar
Ruterana, P., Kret, S., Vivet, A., Maciejewski, G. & Dluzewski, P. (2002). Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers. J Appl Phys 91(11), 89798985.Google Scholar
Singh, J. & Bajaj, K. (1985). Role of interface roughness and alloy disorder in photoluminescence in quantum well structures. J Appl Phys 57(12), 54335437.Google Scholar
Singh, J., Bajaj, K.K. & Chaudhuri, S. (1984). Theory of photoluminescence line shape due to interfacial quality in quantum well structures. Appl Phys Lett 44(8), 805807.Google Scholar
Singh, M. & Singh, J. (2003). Design of high electron mobility devices with composite nitride channels. J Appl Phys 94, 24982506.Google Scholar
Smeeton, T.M., Humphreys, C.J., Barnard, J.S. & Kappers, M.J. (2006). The impact of electron beam damage on the detection of indium-rich localisation centres in InGaN quantum wells using transmission electron microscopy. J Mater Sci 41(9), 27292737.Google Scholar
Van der Laak, N.K., Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2007). Characterization of InGaN quantum wells with gross fluctuations in width. J Appl Phys 102, 013513.Google Scholar