Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T22:52:15.446Z Has data issue: false hasContentIssue false

Characterization of the Expression of Ang1, Ang2, and Tie2 in the Corpus Cavernosum of the Rat during Aging

Published online by Cambridge University Press:  25 October 2010

Ana Lúcia Cordeiro*
Affiliation:
Laboratory of Molecular Cell Biology of Faculty of Medicine and IBMC ofUniversidade do Porto, 4200-319 Porto, Portugal
António Figueiredo
Affiliation:
Laboratory of Molecular Cell Biology of Faculty of Medicine and IBMC ofUniversidade do Porto, 4200-319 Porto, Portugal
Inês Tomada
Affiliation:
Laboratory of Molecular Cell Biology of Faculty of Medicine and IBMC ofUniversidade do Porto, 4200-319 Porto, Portugal
Henrique de Almeida
Affiliation:
Laboratory of Molecular Cell Biology of Faculty of Medicine and IBMC ofUniversidade do Porto, 4200-319 Porto, Portugal
Delminda Neves
Affiliation:
Laboratory of Molecular Cell Biology of Faculty of Medicine and IBMC ofUniversidade do Porto, 4200-319 Porto, Portugal
*
Corresponding author. E-mail: lucia.mcr@gmail.com
Get access

Abstract

Aging is the single most significant risk factor for erectile dysfunction (ED), leading to structural modification of cavernous tissue and altering expression of vascular growth factors. The angiopoietin/Tie2 system has been recently considered as a potential target for therapy of vascular disorders, including ED. Hence, the aim of this study was to analyze expression of angiopoietin1 (Ang1), angiopoietin2 (Ang2), and their receptor Tie2 in corpus cavernosum (CC) of rat during aging (6, 12, 18, and 24 months). The expression of Ang1, Ang2, and Tie2 was studied by immunohistochemistry and immunofluorescence, followed by semiquantification after Western blotting. Both Ang1 and Ang2 were localized mainly in perivascular smooth muscle and endothelial cells, while Tie2 was strictly detected at the vascular endothelium. A significant decrease in Ang2's expression was observed at 12 months when compared with 6-month-old rats, a tendency that reverses in older animals. No significant differences were demonstrated for Ang1 or Tie2, which is consistent with their constitutive expression in CC. The ratios Ang1/Tie2 and Ang2/Tie2 were also calculated and both decrease during aging, while no marked variation was observed for Ang1/Ang2. Our results suggest that the angiopoietin/Tie2 system participate in the vascular maintenance and remodeling of the CC during aging.

Type
Special Section from Portugal Meeting
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aboseif, S.R. & Lue, T.F. (1988). Hemodynamics of penile erection. Urol Clin North Am 15(1), 17.CrossRefGoogle ScholarPubMed
Bach, F., Uddin, F.J. & Burk, D. (2006). Angiopoietins in malignancy. ESJO 33 (1), 715.Google ScholarPubMed
Bogdanovic, E., Nguyen, V.P. & Dumont, D.J. (2006). Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization. J Cell Sci 119(Pt 17), 35513560.CrossRefGoogle ScholarPubMed
Bossart, M.I., Spjut, H.J. & Scott, F.B. (1980). Ultrastructural analysis of human penile corpus cavernosum. Its significance in tumescence and detumescence. Urology 15(5), 448456.CrossRefGoogle ScholarPubMed
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.CrossRefGoogle ScholarPubMed
Burchardt, T., Burchardt, M., Karden, J., Buttyan, R., Shabsigh, A., Taille, A., Ng, P.Y., Anastasiadis, A.G. & Shabsigh, R. (2000). Reduction of endothelium and smooth muscle density in the corpora cavernosa of the streptozotocin induced diabetic rat. J Urol 164(5), 18071811.CrossRefGoogle ScholarPubMed
Burnett, A.L. (1995). Role of nitric oxide in the physiology of erection. Biol Reprod 52(3), 485489.CrossRefGoogle ScholarPubMed
Burnett, A.L., Lowenstein, C.J., Brad, D.S., Chang, T.S. & Snyder, S.H. (1992). Nitric oxide: A physiology mediator of penile erection. Science 257(5068), 401403.CrossRefGoogle ScholarPubMed
Carmeliet, P. (2003). Angiogenesis in health and disease. Nat Med 9(6), 653660.CrossRefGoogle ScholarPubMed
Carmeliet, P. & Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407(6801), 257259.CrossRefGoogle ScholarPubMed
Cheitlin, C.M.D. (2004). Erectile dysfunction: The earliest sign of generalized vascular disease. J Am Coll Cardiol 43(2), 185186.CrossRefGoogle ScholarPubMed
Coleman, P., Finch, C. & Joseph, J. (1990). The need for multiple time points in aging studies. Neurobiol Aging 11(1), 12.CrossRefGoogle ScholarPubMed
Cordeiro, A.L., Figueiredo, A., Godinho, F., Martins, I., Vendeira, P., Almeida, H. & Neves, D. (2008). Ultrastructural characterization of corpus cavernosum of ageing, orchidectomy and diabetes rat experimental models. Microsc Microanal 14, 9798.CrossRefGoogle Scholar
Costa, C. & Vendeira, P. (2008). Does erectile tissue angioarchitecture modify with aging? An immunohistological and morphometric approach. J Sex Med 5(4), 833840.CrossRefGoogle ScholarPubMed
Daly, C., Pasnikowski, E., Burova, E., Wong, V., Aldrich, T.H., Griffiths, J., Ioffe, E., Daly, T.J., Fandl, J.P., Papadopoulos, N., McDonald, D.M., Thurston, G., Yancopoulos, G.D. & Rudge, J.S. (2006). Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103(42), 1549115496.CrossRefGoogle ScholarPubMed
Dumont, D.J., Gradwohl, G., Fong, G-H., Puri, M.C., Gertsenstein, M., Auerbach, A. & Breitman, M.L. (1994). Dominant-negative and targeted null mutations in the endothehal receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8(16), 18971909.CrossRefGoogle Scholar
Eklund, L. & Olsen, B. (2005). Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312(5), 630641.CrossRefGoogle ScholarPubMed
Feldman, H.A., Goldstein, I., Hatzichristou, D.G., Krane, R.J. & McKinlay, J.B. (1994). Impotence and its medical and psychosocial correlates: Results of the Massachusetts Male Aging Study. J Urol 151(1), 5461.CrossRefGoogle ScholarPubMed
Fernandez, E., Dail, W.G., Walton, G. & Martinez, G. (1991). The vasculature of the rat penis: A scanning electron microscopic and histologic study. Am J Anat 192(3), 307318.CrossRefGoogle ScholarPubMed
Ferrara, N., Gerber, H.P. & Lecouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9(6), 669676.CrossRefGoogle ScholarPubMed
Fiedler, U. & Augustin, H.G. (2006). Angiopoietins: A link between angiogenesis and inflammation. Trends Immunol 27(12), 552558.CrossRefGoogle ScholarPubMed
Fiedler, U., Reiss, Y., Scharpfenecker, M., Grunow, V., Koidl, S., Thurston, G., Gale, N.W., Witzenrath, M., Rosseau, S., Suttorp, N., Sobke, A., Herrmann, M., Preissner, K.T., Vaijkoczy, P. & Augustin, H.G. (2006). Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12(2), 235239.CrossRefGoogle Scholar
Fiedler, U., Scharpfenecker, M. & Koidl, S. (2004). The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103(11), 41504156.CrossRefGoogle ScholarPubMed
Gale, N.W., Thurston, G., Hackettackett, S.F., Renard, R., Wang, Q., McClain, J., Martin, C., Witte, C., Witte, M.H., Jackson, D., Suri, C., Campochiaro, P.A., Wiegand, S.J. & Yancopoulos, G.D. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3(3), 411423.CrossRefGoogle ScholarPubMed
Garban, H., Marquez, D., Magee, T., Rajavashisth, T., Rodriguez, J.A., Hung, A., Vernet, D., Rajfer, J. & Gonzalez-Cadavid, N.F. (1997). Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol Reprod 56(4), 954963.CrossRefGoogle ScholarPubMed
Ghalayini, I.F., Al-Ghazo, M.A., Al-Azab, R., Bani-Hani, I., Matani, Y.S., Barham, A.E., Harfeil, M.N. & Haddad, Y. (2010). Erectile dysfunction in a Mediterranean country: Results of an epidemiological survey of a representative sample of men. Int J Impot Res 22(3), 196203.CrossRefGoogle Scholar
Goldstein, I. (2003). The association of ED (erectile dysfunction) with ED (endothelium dysfunction) in the international journal of impotence research: The journal of sexual medicine. Int J Impot Res 15(4), 229230.CrossRefGoogle ScholarPubMed
Guay, A.T. (2007). ED2: erectile dysfunction = endothelial dysfunction. Endocrinol Metabol Clin N Am 36(2), 453463.CrossRefGoogle ScholarPubMed
Gumus, B., Vatansever, H.S., Muezzinoglu, T., Muftuoglu, S., Kaymaz, F. & Buyuksu, C. (2004). Histopathological effects of sildenafil citrate on rat corpus cavernosum. Acta Histochem 106(1), 3745.CrossRefGoogle ScholarPubMed
Hackett, S.F., Wiegand, S. & Yancopoulos, G. (2002). Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 192(2), 182187.CrossRefGoogle ScholarPubMed
Koga, K., Todaka, T., Morioka, M., Hamada, J., Kai, Y., Yano, S., Okamura, A., Takakura, N., Suda, T. & Ushio, Y. (2001). Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61(16), 62486254.Google ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680685.CrossRefGoogle ScholarPubMed
Lobov, I.B., Brooks, P.C. & Lang, R.A. (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial survival in vivo. Proc Natl Acad Sci 99(17), 1120511210.CrossRefGoogle ScholarPubMed
Maisonpierre, P.C., Suri, C. & Jones, P.F. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 5560.CrossRefGoogle ScholarPubMed
Neves, D., Assunção, M., Marques, F., Andrade, J.P. & Almeida, H. (2008). Does regular consumption of green tea influence expression of vascular endothelial growth factor and its receptor in aged rat erectile tissue? Possible implications for vasculogenic erectile dysfunction progression. Age (Dordr) 30(4), 217228.CrossRefGoogle ScholarPubMed
Neves, D., Santos, J., Tomada, N., Almeida, H. & Vendeira, P. (2006). Aging and orchidectomy modulate expression of VEGF receptors (Flt-1 and Flk-1) on corpus cavernosum of the rat. Ann NY Acad Sci 1067, 164172.CrossRefGoogle ScholarPubMed
Otrock, Z.K., Mahfouz, A.R., Makarem, J.A. & Shamseddine, A.I. (2007). Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol Dis 39(2), 212220.CrossRefGoogle ScholarPubMed
Patan, S. (1998). TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56(1), 121.CrossRefGoogle ScholarPubMed
Peters, K.G. (1998). Vascular endothelial growth factor and the angiopoietins: Working together to build a better blood vessel. Circ Res 83(3), 342343.CrossRefGoogle ScholarPubMed
Pfaff, D., Fiedler, U. & Augustin, H.G. (2006). Emerging roles of the angiopoietin-tie and the ephrin-Eph systems as regulators of cell trafficking. J Leukoc Biol 80(4), 719726.CrossRefGoogle ScholarPubMed
Pinheiro, A.C.A.D., Costa, S.C., Cardoso, L.E.M. & Sampaio, F.J.B. (2000). Organization and relative content of smooth muscle cells, collagen and elastic fibers in the corpus cavernosum of rat penis. J Urol 164(5), 18021806.CrossRefGoogle ScholarPubMed
Ponholzer, A., Temml, C., Mock, K., Marzlaekm, M., Obermayr, R. & Maderbacher, S. (2005). Prevalence and risk factors for erectile dysfunction in 2869 men using a validated questionnaire. Eur Urol 47(1), 8086.CrossRefGoogle ScholarPubMed
Risau, W. (1997). Mechanisms of angiogenesis. Nature 386(6626), 671674.CrossRefGoogle ScholarPubMed
Ryu, J.-K., Cho, C.-H., Shin, H.-Y., Song, S.U., Oh, S.-M., Lee, M., Piao, S., Han, J.-Y., Kim, I.-H., Koh, G.Y. & Suh, J.-K. (2005). Combined angiopoietin-1 and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hipercholesterolemia. Molec Ther 20(4), 111.Google Scholar
Sato, T.N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W. & Qin, Y. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376(6535), 7074.CrossRefGoogle ScholarPubMed
Schnurch, H. & Risau, W. (1993). Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119(3), 957968.CrossRefGoogle ScholarPubMed
Scott, B.B., Zaratin, P.F., Gilmartin, A.G., Hansbury, M.J., Colombo, A., Belpasso, C., Winkler, J.D. & Jackson, J.R. (2005). TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328(2), 409414.CrossRefGoogle ScholarPubMed
Stratmann, A., Risau, W. & Plate, K.H. (1998). Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153(5), 14591466.CrossRefGoogle ScholarPubMed
Suri, C., Jones, P.F., Patan, S., Bartunkova, S., Maisonpierre, P.C., Davis, S., Sato, T.N. & Yancopoulos, G.D. (1996). Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell 87(7), 11711180.CrossRefGoogle ScholarPubMed
Thomas, M. & Augustin, G. (2009). The role of angiopoietins in vascular morphogenesis. Angiogenesis 12(2), 125137.CrossRefGoogle ScholarPubMed
Tomada, N., Oliveira, R., Tomada, I., Vendeira, P. & Neves, D. (2008). Comparative ultrastructural study of human corpus cavernosum during ageing. Microsc Microanal 14, 152155.CrossRefGoogle Scholar
Tomada, N., Tomada, I., Cruz, F., Vendeira, P. & Neves, D. (2010a). Characterization of VEGF and angiopoietins expression in human corpus cavernosum during aging. J Sex Med 7(4), 14101418.CrossRefGoogle ScholarPubMed
Tomada, N., Tomada, I., Vendeira, P. & Neves, D. (2010b). Expression of vascular endothelial growth factor and angiopoietins in human corpus cavernosum. BJU Int 105(2), 269273.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76, 43504354.CrossRefGoogle ScholarPubMed
Yancopoulos, G.D., Klagsbrun, M. & Folkman, J. (1998). Vasculogenesis, angiogenesis and growth factors: Epherins enter the fray at the border. Cell 93(5), 661664.CrossRefGoogle ScholarPubMed
Yuan, H.T., Khankin, E.V., Karumanchi, S.A. & Parikh, S.M. (2009). Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29(8), 20112022.CrossRefGoogle ScholarPubMed