Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-08T01:30:18.164Z Has data issue: false hasContentIssue false

Characterization of Nanoporous Materials with Atom Probe Tomography

Published online by Cambridge University Press:  20 May 2015

Björn Pfeiffer*
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
Torben Erichsen
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
Eike Epler
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
Cynthia A. Volkert
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
Piet Trompenaars
Affiliation:
FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands
Carsten Nowak
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
*
*Corresponding author.bpfeiffer@ump.gwdg.de
Get access

Abstract

A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested—dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64, 29112919.CrossRefGoogle Scholar
Chmelik, C. & Kärger, J. (2010). In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem Soc Rev 39, 48644884.CrossRefGoogle Scholar
Cho, J. (2010). Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 20, 40094014.CrossRefGoogle Scholar
Córdoba, R., Sesé, J., de Teresa, J.M. & Ibarra, M.R. (2010). High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron Eng 87, 15501553.CrossRefGoogle Scholar
Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., Grenèche, J.-M., Serre, C., Daturi, M. & Garcia, H. (2012). Comparison of porous iron trimesates basolite F300 and MIL-100(Fe) as heterogeneous catalysts for Lewis acid and oxidation reactions: Roles of structural defects and stability. ACS Catal 2, 20602065.CrossRefGoogle Scholar
Ene, C.-B., Schmitz, G., Al-Kassab, T. & Kirchheim, R. (2007). Solid state reaction in sandwich-type Al/Cu thin films. Ultramicroscopy 107, 802807.CrossRefGoogle ScholarPubMed
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N. & Sieradzki, K. (2001). Evolution of nanoporosity in dealloying. Nature 410, 450453.CrossRefGoogle ScholarPubMed
Fernández-Pacheco, A., de Teresa, J.M., Córdoba, R. & Ibarra, M.R. (2009). Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42, 055005.CrossRefGoogle Scholar
Kapur, S. & Müller, E.W. (1977). Metal-neon compound ions in slow field evaporation. Surf Sci 62, 610620.CrossRefGoogle Scholar
Khodakov, A.Y., Griboval-Constant, A., Bechara, R. & Zholobenko, V.L. (2002). Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206, 230241.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Lavrijsen, R., Córdoba, R., Schoenaker, F.J., Ellis, T.H., Barcones, B., Kohlhepp, J.T., Swagten, H.J.M., Koopmans, B., de Teresa, J.M., Magén, C., Ibarra, M.R., Trompenaars, P. & Mulders, J.J.L. (2011). Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties. Nanotechnology 22, 025302.CrossRefGoogle ScholarPubMed
Liu, J., Xia, H., Lu, L. & Xue, D. (2010). Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20, 15061510.CrossRefGoogle Scholar
Lukasczyk, T., Schirmer, M., Steinrück, H.-P. & Marbach, H. (2008). Electron-beam-induced deposition in ultrahigh vacuum: Lithographic fabrication of clean iron nanostructures. Small 4, 841846.CrossRefGoogle ScholarPubMed
Maire, E. (2012). X-ray tomography applied to the characterization of highly porous materials. Annu Rev Mater Res 42, 163178.CrossRefGoogle Scholar
Melmed, A.J., Martinka, M., Girvin, S.M., Sakurai, T. & Kuk, Y. (1981). Analysis of high resistivity semiconductor specimens in an energy-compensated time-of-flight atom probe. Appl Phys Lett 39, 416417.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscop y . Oxford: Oxford University Press.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.CrossRefGoogle ScholarPubMed
Mulders, J.J.L., Belova, L.M. & Riazanova, A. (2011). Electron beam induced deposition at elevated temperatures: Compositional changes and purity improvement. Nanotechnology 22, 055302.CrossRefGoogle ScholarPubMed
Muthukumar, K., Jeschke, H.O., Valenti, R., Begun, E., Schwenk, J., Porrati, F. & Huth, M. (2012). Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation. Beilstein J Nanotechnol 3, 546555.CrossRefGoogle ScholarPubMed
Pap, A.E., Kordás, K., Peura, R. & Leppävuori, S. (2002). Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation. Appl Surf Sci 201, 5660.CrossRefGoogle Scholar
Phelan, R., Holmes, J.D. & Petkov, N. (2012). Application of serial sectioning FIB/SEM tomography in the comprehensive analysis of arrays of metal nanotubes. J Microsc 246, 3342.CrossRefGoogle ScholarPubMed
Rösner, H., Parida, S., Kramer, D., Volkert, C.A. & Weissmüller, J. (2007). Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv Eng Mater 9, 535541.CrossRefGoogle Scholar
Scheuer, V., Koops, H. & Tschudi, T. (1986). Electron beam decomposition of carbonyls on silicon. Microelectron Eng 5, 423430.CrossRefGoogle Scholar
Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L. & Munroe, P. (2007). Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull 32, 408416.CrossRefGoogle Scholar
van Dorp, W.F. & Hagen, C.W. (2008). A critical literature review of focused electron beam induced deposition. J Appl Phys 104, 081301.CrossRefGoogle Scholar
Volkert, C.A., Lilleodden, E.T., Kramer, D. & Weissmüller, J. (2006). Approaching the theoretical strength in nanoporous Au. Appl Phys Lett 89, 061920.CrossRefGoogle Scholar
Wang, K. & Weissmüller, J. (2013). Composites of nanoporous gold and polymer. Adv Mater 25, 12801284.CrossRefGoogle ScholarPubMed
Weissmüller, J., Newman, R.C., Jin, H.-J., Hodge, A.M. & Kysar, J.W. (2009). Nanoporous metals by alloy corrosion: Formation and mechanical properties. MRS Bull 34, 577586.CrossRefGoogle Scholar
Wnuk, J.D., Gorham, J.M., Rosenberg, S.G., van Dorp, W.F., Madey, T.E., Hagen, C.W. & Fairbrother, D.H. (2009). Electron induced surface reactions of the organometallic precursor trimethyl(methylcyclopentadienyl)platinum(IV). J Phys Chem C 113, 24872496.CrossRefGoogle Scholar
Xiang, Y., Chitry, V., Liddicoat, P., Felfer, P., Cairney, J., Ringer, S. & Kruse, N. (2013). Long-chain terminal alcohols through catalytic CO hydrogenation. J Am Chem Soc 135, 71147117.CrossRefGoogle ScholarPubMed