Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:30:50.558Z Has data issue: false hasContentIssue false

Characterization of Micro- and Nanophase Separation of Dentin Bonding Agents by Stereoscopy and Atomic Force Microscopy

Published online by Cambridge University Press:  03 February 2012

Manuel Toledano*
Affiliation:
Materiales Dentales, Facultad de Odontología, Colegio Máximo, Campus de Cartuja sn, Universidad de Granada, Granada 18071, Spain
Monica Yamauti
Affiliation:
Materiales Dentales, Facultad de Odontología, Colegio Máximo, Campus de Cartuja sn, Universidad de Granada, Granada 18071, Spain
Estrella Osorio
Affiliation:
Materiales Dentales, Facultad de Odontología, Colegio Máximo, Campus de Cartuja sn, Universidad de Granada, Granada 18071, Spain
Francesca Monticelli
Affiliation:
Universidad de Zaragoza—Operatoria Dental, Calle Velodromo sn, Huesca, Huesca 22002, Spain
Raquel Osorio
Affiliation:
Materiales Dentales, Facultad de Odontología, Colegio Máximo, Campus de Cartuja sn, Universidad de Granada, Granada 18071, Spain
*
Corresponding author. E-mail: toledano@ugr.es
Get access

Abstract

The aim was to study the effect of solvents on the phase separation of four commercial dental adhesives. Four materials were tested: ClearfilTM SE Bond (CSE), Clearfil Protect Bond (CPB), Clearfil S3 Bond (CS3), and One-Up Bond F Plus (OUB). Distilled water or ethanol was used as a solvent (30 vol%) for microphase separation studies, by stereoscopy. For nanophase images, the mixtures were formulated with two different solvent concentrations (2.5 versus 5 vol%) and observed by atomic force microscopy. Images were analyzed by using MacBiophotonics ImageJ to measure the area of bright domains. Macrophase separations, identified as a loss of clarity, were only observed after mixing the adhesives with water. Nanophase separations were detected with all adhesive combinations. The area of bright domains ranged from 132 to 1,145 nm2 for CSE, from 15 to 285 nm2 for CPB, from 149 to 380 nm2 for CS3, and from 26 to 157 nm2 for OUB. In water-resins mixtures, CPB was the most homogeneous and OUB showed the most heterogeneous phase formation. In ethanol-resin mixtures, CSE attained the most homogeneous structure and OUB showed the most heterogeneous phase. Addition of 5 vol% ethanol to resins decreased the nanophase separation when compared with the control materials.

Type
Biological and Biomedical Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Becker, T.D., Agee, K.A., Joyce, A.P., Rueggeberg, F.A., Borke, J.L., Waller, J.L., Tay, F.R. & Pashley, D.H. (2007). Infiltration/evaporation-induced shrinkage of demineralized dentin by solvated model adhesives. J Biomed Mater Res B 80, 156165.CrossRefGoogle ScholarPubMed
Brackett, M.G., Dib, A., Franco, G., Estrada, B.E. & Brackett, W.W. (2010). Two-year clinical performance of Clearfil SE and Clearfil S3 in restoration of unbraded non-carious class V lesions. Oper Dent 35, 273278.CrossRefGoogle ScholarPubMed
Breschi, L., Mazzoni, A., Nato, F., Carrilho, M., Visintini, E., Tjäderhane, L., Ruggeri, A. Jr., Tay, F.R., Dorigo Ede, S. & Pashley, D.H. (2010). Chlorhexidine stabilizes the adhesive interface: A 2-year in vitro study. Dent Mater 26, 320325.CrossRefGoogle ScholarPubMed
Chersoni, S., Suppa, P., Grandini, S., Goracci, C., Monticelli, F., Yiu, C., Huang, C., Prati, C., Breschi, L., Ferrari, M., Pashley, D.H. & Tay, F.R. (2004). In vivo and in vitro permeability of one-step self-etch adhesives. J Dent Res 83, 459464.CrossRefGoogle ScholarPubMed
Fejerskov, O. & Kidd, E. (2008). Dental Caries: The Disease and Its Clinical Management. Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
Gaintantzopoulou, M., Rahiotis, C. & Eliades, G. (2008). Molecular characterization of one-step self-etching adhesives placed on dentin and inert substrate. J Adhes Dent 10, 8393.Google ScholarPubMed
Guo, X., Wang, Y., Spencer, P., Ye, Q. & Yao, X. (2008). Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin. Dent Mater 24, 824831.CrossRefGoogle Scholar
Hoogenboom, R., Rogers, S., Can, A., Becer, C.R., Guerrero-Sanchez, C., Wouters, D., Hoeppener, S. & Schubert, U.S. (2009). Self-assembly of double hydrophobic block copolymers in water-ethanol mixtures: From micelles to thermoresponsive micellar gels. Chem Commun (Camb) 7, 55825584.CrossRefGoogle Scholar
Jacobsen, T. & Söderholm, K.J. (1995). Some effects of water on dentin bonding. Dent Mater 11, 132136.CrossRefGoogle ScholarPubMed
Jyotishkumar, P., Koetz, J., Tiersch, B., Strehmel, V., Ozdilek, C., Moldenaers, P., Hässler, R. & Thomas, S. (2009). Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4′-diaminodiphenyl sulfone blends: Generation of new micro- and nanosubstructures. J Phys Chem B 113, 54185430.CrossRefGoogle Scholar
Kanapitas, A., Pissis, P., Ribelles, J., Pradas, M.M., Privalko, E.G. & Privalko, V.P. (1999). Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft- and hard-chain segments. J Appl Polym Sci 71, 12091221.3.0.CO;2-5>CrossRefGoogle Scholar
Kostoryz, E.L., Dharmala, K., Ye, Q., Wang, Y., Huber, J., Park, J.G., Snider, G., Katz, J.L. & Spencer, P. (2009). Enzymatic biodegradation of HEMA/bisGMA adhesives formulated with different water content. J Biomed Mater Res B 88, 394401.CrossRefGoogle ScholarPubMed
Longbottom, C.L., Huysmans, M.C., Pitts, N.B. & Fontana, M. (2009). Glossary of key terms. Monogr Oral Sci 21, 209216.CrossRefGoogle ScholarPubMed
Lua, Y.-Y., Cao, X., Rohrs, B.R. & Aldrich, D.S. (2007). Surface characterizations of spin-coated films of ethylcellulose and hydroxypropyl methylcellulose blends. Langmuir 23, 42864292.CrossRefGoogle ScholarPubMed
Mine, A., De Munck, J., Cardoso, M.V., Van Landuyt, K.L., Poitevin, A., Kuboki, T., Yoshida, Y., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2009). Bonding effectiveness of two contemporary self-etch adhesives to enamel and dentin. J Dent 37, 872883.CrossRefGoogle ScholarPubMed
Misra, A., Spencer, P., Marangos, O., Wang, Y. & Katz, J.L. (2005). Parametric study of the effect of phase anisotropy on the micromechanical behavior of dentin/adhesive interfaces. J R Soc Interface 2, 145157.CrossRefGoogle ScholarPubMed
Moszner, N., Salz, U. & Zimmermann, J. (2005). Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent Mater 21, 895910.CrossRefGoogle ScholarPubMed
Nunes, T.G., Ceballos, L., Osorio, R. & Toledano, M. (2005). Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives. Biomaterials 26, 18091817.CrossRefGoogle ScholarPubMed
Osorio, E., Toledano, M., Aguilera, F.S., Tay, F.R. & Osorio, R. (2010a). Ethanol wet-bonding technique sensitivity assessed by AFM. J Dent Res 89, 12641269.CrossRefGoogle ScholarPubMed
Osorio, R., Aguilera, F.S., Otero, P.R., Romero, M., Osorio, E., García-Godoy, F. & Toledano, M. (2010b). Primary dentin etching time, bond strength and ultra-structure characterization of dentin sufaces. J Dent 38, 222231.CrossRefGoogle Scholar
Osorio, R., Pisani-Proença, J., Erhardt, M.C., Osorio, E., Aguilera, F.S., Tay, F.R. & Toledano, M. (2008). Resistance of tem contemporary adhesives to resin-dentine bond degradation. J Dent 36, 163169.CrossRefGoogle Scholar
Osorio, R., Yamauti, M., Osorio, E., Ruiz-Requena, M.E., Pashley, D.H., Tay, F.R. & Toledano, M. (2011). Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 39(2), 148153.CrossRefGoogle ScholarPubMed
Pashley, D.H. & Tay, F.R. (2001). Aggressiveness of contemporary self-etching adhesives Part II: Etching effects on unground enamel. Dent Mater 17, 430444.CrossRefGoogle ScholarPubMed
Pashley, D.H., Tay, F.R., Carvalho, R.M., Rueggeberg, F.A., Agee, K.A., Carrilho, M., Donnely, A. & García-Godoy, F. (2007). From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent 20, 720.Google ScholarPubMed
Peumans, M., De Munck, J., Van Landuyt, K.L., Poitevin, A., Lambrechts, P. & Van Meerbeek, B. (2010). Eight-year clinical evaluation of a 2-step self-etch adhesive with and without selective enamel etching. Dent Mater 26, 11761184.CrossRefGoogle ScholarPubMed
Reis, A.F., Oliveira, M.T., Giannini, M., de Goes, M.F. & Rueggeberg, F.A. (2003). The effect of organic solvents on one-bottle adhesives' bond strength to enamel and dentin. Oper Dent 28, 700706.Google ScholarPubMed
Sadek, F.T., Mazzoni, A., Breschi, L., Tay, F.R. & Braga, R.R. (2010). Six-month evaluation of adhesives interface created by a hydrophobic adhesive to acid-etched ethanol-wet bonded dentine with simplified dehydration protocols. J Dent 38, 276283.CrossRefGoogle ScholarPubMed
Sadek, F.T., Pashley, D.H., Nishitani, Y., Carrilho, M.R., Donnelly, A., Ferrari, M. & Tay, F.R. (2008). Application of hydrophobic resin adhesives to acid-etched dentin with an alternative wet bonding technique. J Biomed Mater Res A 84, 1929.CrossRefGoogle ScholarPubMed
Santer, S. & Rühe, J. (2004). Motion of nano-objects on polymer brushes. Polymer 45, 82798297.CrossRefGoogle Scholar
Sauro, S., Watson, T.F., Mannocci, F., Miyake, K., Huffman, B.P., Tay, F.R. & Pashley, D.H. (2009). Two-photon laser confocal microscopy of micropermeability of resin-dentin bonds made with water or ethanol wet bonding. J Biomed Mater Res B 90B, 327337.CrossRefGoogle Scholar
Shin, T.P., Yao, X., Huenergardt, R., Walker, M.P. & Wang, Y. (2009). Morphological and chemical characterization of bonding hydrophobic adhesive to dentin using ethanol wet bonding technique. Dent Mater 25, 10501057.CrossRefGoogle ScholarPubMed
Spencer, P. & Wang, Y. (2002). Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res 12, 447456.CrossRefGoogle Scholar
Spencer, P., Wang, Y. & Bohaty, B. (2006). Interfacial chemistry of moisture-aged class II composite restorations. J Biomed Mater Res B 77B, 234240.CrossRefGoogle Scholar
Tay, F.R., Gwinnett, J.A. & Wei, S.H. (1996). Micromorphological spectrum from overdrying to overwetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater 12, 236244.CrossRefGoogle ScholarPubMed
Tay, F.R., Pashley, D.H., Kapur, R.R., Carrilho, M.R., Hur, Y.B., Garrett, L.V. & Tay, K.C. (2007). Bonding BisGMA to dentin—A proof of concept for hydrophobic dentin bonding. J Dent Res 86, 10341039.CrossRefGoogle ScholarPubMed
Ten Cate, A.R. (1994). Oral Histology: Development, Structure, and Function. St. Louis, MO: Mosby-Year Book.Google Scholar
Toledano, M., Osorio, R., Moreira, M.A., Cabrerizo-Vilchez, M.A., Gea, P., Tay, F.R. & Pashley, D.H. (2004). Effect of hydration status of the smear layer on the wettability and bond strength of a self-etching primer to dentin. Am J Dent 17, 310314.Google ScholarPubMed
Toledano, M., Osorio, R., Osorio, E., Aguilera, F.S., Yamauti, M., Pashley, D.H. & Tay, F. (2007). Durability of resin-dentin bonds: Effects of direct/indirect exposure and storage media. Dent Mater 23, 885892.CrossRefGoogle ScholarPubMed
Van Landuyt, K.L., De Munck, J., Snauwaert, J., Coutinho, E., Poitevin, A., Yoshida, Y., Inoue, S., Peumans, M., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2005). Monomer-solvent phase separation in one-step self-etch adhesives. J Den Res 84, 183188.CrossRefGoogle ScholarPubMed
Van Landuyt, K.L., Mine, A., De Munck, J., Jaecques, S., Peumans, M., Lambrechts, P. & Van Meerbeek, B. (2009). Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J Adhes Dent 11, 175190.Google ScholarPubMed
Van Landuyt, K.L., Snauwaert, J., De Munck, J., Coutinho, E., Poitevin, A., Yoshida, Y., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2007). Origin of interfacial droplets with one-step adhesives. J Dent Res 86, 739744.CrossRefGoogle ScholarPubMed
Van Landuyt, K.L., Snauwaert, J., Peumans, M., De Munck, J., Lambrechts, P. & Van Meerbeek, B. (2008). The role of HEMA in one-step self-etch adhesives. Dent Mater 24, 14121419.CrossRefGoogle ScholarPubMed
Wang, Y. & Spencer, P. (2003). Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res 82, 141145.CrossRefGoogle ScholarPubMed
Wang, Y. & Spencer, P. (2005). Interfacial chemistry of class II composite restoration: Structure analysis. J Biomed Mater Res A 75, 580587.CrossRefGoogle ScholarPubMed
Xie, C., Han, Y., Zhao, X.Y., Wang, Z.Y. & He, H.M. (2010). Microtensile bond strength of one- and two-step self-etching adhesives on sclerotic dentin: The effects of thermocycling. Oper Dent 35, 547555.CrossRefGoogle ScholarPubMed
Ye, Q., Park, J.G., Topp, E., Wang, Y., Misra, A. & Spencer, P. (2008). In vitro performance of nano-heterogeneous dentin adhesive. J Dent Res 87, 829833.CrossRefGoogle ScholarPubMed
Ye, Q., Spencer, P. & Wang, Y. (2007a). Nanoscale patterning in crosslinked methacrylate copolymer networks: An atomic force microscopy study. J Appl Polymer Sci Symp 106, 38433851.CrossRefGoogle ScholarPubMed
Ye, Q., Spencer, P., Wang, Y. & Misra, A. (2007b). Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomed Mater Res A 80, 342350.CrossRefGoogle Scholar
Ye, Q., Wang, Y. & Spencer, P. (2009). Nanophase separation of polymers exposed to simulated bonding conditions. J Biomed Mater Res B 88, 339348.CrossRefGoogle ScholarPubMed
Yiu, C.K., Tay, F.R., Pashley, D.H., King, N.M., Suh, B.I. & Itthagarun, A. (2005). Effect of resin hydrophilicity on tracer penetration. A preliminary study. Am J Dent 18, 160164.Google ScholarPubMed