Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T16:47:04.707Z Has data issue: false hasContentIssue false

Building an edge computing infrastructure for rapid multi-dimensional electron microscopy

Published online by Cambridge University Press:  30 July 2021

Debsindhu Bhowmik
Affiliation:
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Debangshu Mukherjee
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, KNOXVILLE, Tennessee, United States
Mark Oxley
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Maxim Ziatdinov
Affiliation:
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Stephen Jesse
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, United States
Sergei Kalinin
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Olga Ovchinnikova
Affiliation:
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Krivanek, OL et al. , Ultramicroscopy 78 (1999), p. 1.CrossRefGoogle Scholar
Dellby, N. et al. , Microscopy 50 (2001), p. 177.CrossRefGoogle ScholarPubMed
Krivanek, OL et al. , Ultramicroscopy 108 (2008), p. 179.CrossRefGoogle Scholar
Nelson, CT et al. , Nano Lett. 11 (2011), p. 828.CrossRefGoogle Scholar
Mukherjee, D et al. , Phys. Rev. B 100 (2019), p. 104102.CrossRefGoogle Scholar
Savitzky, B et al. , Nature Commun. 8 (2017), p. 1.CrossRefGoogle Scholar
Ophus, C et al. , Microsc. Microanal. 20 (2014), p. 62.CrossRefGoogle Scholar
Müller, K et al. , Nature Commun. 5 (2014), p. 1.Google Scholar
Ophus, C, Microsc. Microanal. 25 (2019), p. 563.CrossRefGoogle Scholar
Han, Y et al. , Nano Lett., 18 (2018), p. 3746.CrossRefGoogle Scholar
Mukherjee, D et al. , ACS Catal. 10 (2020), p. 5529.CrossRefGoogle Scholar
Jiang, Y et al. , Nature 559 (2018), p. 343.CrossRefGoogle Scholar
Gao, W et al. , Nature 575 (2019), p. 480.CrossRefGoogle Scholar
Ciston, J et al. , Microsc. Microanal. 25 (2018), p. 1930.Google Scholar
Cherukara, M et al. , Appl. Phys. Lett. 117 (2020), p. 044103.CrossRefGoogle Scholar
Ziatdinov, M et al. , J. Appl. Phys. 128 (2020), p. 055101.CrossRefGoogle Scholar