Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T02:01:04.306Z Has data issue: false hasContentIssue false

Biofilm integrity and cytomorphology of Candida albicans after exposure to UV-light on ZnO thin films: SEM Analysis

Published online by Cambridge University Press:  30 July 2021

Carlos Arzate-Quintana
Affiliation:
Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
César Leyva-Porras
Affiliation:
Centro de investigación en materiales avanzados (CIMAV), Chihuahua, Chihuahua, Mexico
María Alejandra Favila-Pérez
Affiliation:
Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
Alva Rocío Castillo-González
Affiliation:
Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
Celia María Quiñonez-Flores
Affiliation:
Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
Alejandro Faudoa-Arzate
Affiliation:
School of Engineering and Sciences, Tecnológico de Monterrey, Chihuahua, Chihuahua, Mexico

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Challenges and Advances in Electron Microscopy Research and Diagnosis of Diseases in Humans, Plants and Animals (FIG associated)
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Arzate-Quintana, C, Camarillo-Cisneros, J, Realyvazquez-Guevara, P, Faudoa-Arzate, A, & Rodríguez, H. 2020. SEM Study of the Photocatalytic Activity of SnO2 Films Exposed to UV Radiation Against the Human Pathogen C. albicans. Microscopy and Microanalysis, Vol. 26(S2), pp. 1362-1365. doi:10.1017/S1431927620017845.CrossRefGoogle Scholar
Ruiz G, Bravo, Ross, ZK, Gow, NAR, Lorenz, A. 2020. Pseudohyphal growth of the emerging pathogen Candida auris is triggered by genotoxic stress through the S phase checkpoint. mSphere Vol 5:e00151-20, pp 1-17. https://doi.org/10.1128/mSphere.00151-20.Google Scholar
Chen, H, Zhou, X, Ren, B & Cheng, L. (2020). The regulation of hyphae growth in Candida albicans. Virulence, Vol. 11:1, pp. 337-348, doi: 10.1080/21505594.2020.1748930.CrossRefGoogle ScholarPubMed
Fakhim, H, Vaezi, A, Dannaoui, E, Chowdhary, A, Nasiry, D, Faeli, L, Meis, JF & Badali, H. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses, Vol. 61: pp. 377382. doi: 10.1111/myc.12754.CrossRefGoogle Scholar
Kornitzer, D. 2019. Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J. Fungi, Vol. 5, 21; doi:10.3390/jof5010021.Google ScholarPubMed
Mukaremera, L, Lee, KK, Mora-Montes, HM & Gow, NAR. 2017. Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Front. Immunol. Vol. 8, pp 629. https://doi.org/10.3389/fimmu.2017.00629.Google ScholarPubMed
Sharma, J, Rosiana, S, Razzaq, I & Shapiro, RS. 2019. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J. Fungi, Vol. 5, 17; doi:10.3390/jof5010017.Google ScholarPubMed