Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T11:05:02.388Z Has data issue: false hasContentIssue false

Asymmetric Discharge-Charge Reactions in Conversion-Type Electrodes for Lithium-Ion Batteries

Published online by Cambridge University Press:  30 July 2021

Shuang Li
Affiliation:
Pacific Northwest National Laboratory, United States
Zulipiya Shadike
Affiliation:
Brookhaven National Laboratory, United States
Gihan Kwon
Affiliation:
Brookhaven National Laboratory, United States
Ji Hoon Lee
Affiliation:
Kyungpook National University, United States
Sooyeon Hwang
Affiliation:
Brookhaven National Lab, New York, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Microscopy & Spectroscopy of Energy Conversion and Storage Materials
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. (2010). Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials 22, E170E192.CrossRefGoogle ScholarPubMed
Chae, B.-M., Oh, E.-S. & Lee, Y.-K. (2015). Conversion mechanisms of cobalt oxide anode for Li-ion battery: In situ X-ray absorption fine structure studies. Journal of Power Sources 274, 748–754.CrossRefGoogle Scholar
He, K., Xin, H. L., Zhao, K., Yu, X., Nordlund, D., Weng, T.-C., Li, J., Jiang, Y., Cadigan, C. A., Richards, R. M., Doeff, M., Yang, X.-Q., Stach, E. A., Li, J., Lin, F. & Su, D. (2015). Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials. Nano Letters 15, 14371444.CrossRefGoogle ScholarPubMed
He, K., Zhang, Sen, Li, J., Yu, X., Meng, Q., Zhu, Y., Hu, E., Sun, K., Yun, H., Yang, X.-Q., Zhu, Y., Gan, H., Mo, Y., Stach, E. A., Murray, C. B. & Su, D. (2016). Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nature Communications 7, 11441.Google ScholarPubMed
Jang, J.-H., Chae, B.-M., Oh, H.-J. & Lee, Y.-K. (2016). Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray absorption near edge structure spectroscopy. Journal of Power Sources 304, 189195.CrossRefGoogle Scholar
Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. (2013). Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 113, 53645457.CrossRefGoogle ScholarPubMed
Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. (2006). High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials 5, 567573.CrossRefGoogle ScholarPubMed