Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T04:59:19.203Z Has data issue: false hasContentIssue false

Alpha-synuclein Fibrils Structure Determination in the Presence of Tau Using CryoEM

Published online by Cambridge University Press:  30 July 2020

Alimohammad Hojjatian
Affiliation:
Florida State University, Tallahassee, Florida, United States
Anvesh Dasari
Affiliation:
East Carolina University, Greenville, North Carolina, United States
Dianne Taylor
Affiliation:
Florida State University, Tallahassee, Florida, United States
Nadia Daneshparvar
Affiliation:
Florida State University, Tallahassee, Florida, United States
Fatemeh Abbasi Yeganeh
Affiliation:
Florida State University, Tallahassee, Florida, United States
Kwang lim
Affiliation:
East Carolina University, Greenville, North Carolina, United States
Kenneth Taylor
Affiliation:
Florida State University, Tallahassee, Florida, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
3D Structures: From Macromolecular Assemblies to Whole Cells (3DEM FIG)
Copyright
Copyright © Microscopy Society of America 2020

References

Callaway, E. (2015). The revolution will not be crystallized: a new method sweeps through structural biology. Nature News, 525(7568), 172.10.1038/525172aCrossRefGoogle Scholar
Frank, J., & Al-Ali, L. (1975). Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature, 256(5516), 376379.10.1038/256376a0CrossRefGoogle ScholarPubMed
Frank, J. (2006). Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state (New York: Oxford University Press)10.1093/acprof:oso/9780195182187.001.0001CrossRefGoogle Scholar
Henderson, R. (2013). Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proceedings of the National Academy of Sciences, 110(45), 1803718041.10.1073/pnas.1314449110CrossRefGoogle Scholar
Cochran, W., Crick, F. H., & Vand, V. (1952). The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Crystallographica, 5(5), 581586.10.1107/S0365110X52001635CrossRefGoogle Scholar
Klug, A., Crick, F. H. C., & Wyckoff, H. W. (1958). Diffraction by helical structures. Acta Crystallographica, 11(3), 199213.10.1107/S0365110X58000517CrossRefGoogle Scholar
He, S., & Scheres, S. H. (2017). Helical reconstruction in RELION. Journal of structural biology, 198(3), 163176.10.1016/j.jsb.2017.02.003CrossRefGoogle ScholarPubMed
Scheres, S. H. (2020). Amyloid structure determination in RELION-3.1. Acta Crystallographica Section D: Structural Biology, 76(2).Google ScholarPubMed
Egelman, E. H. (2000). A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy, 85(4), 225234.10.1016/S0304-3991(00)00062-0CrossRefGoogle ScholarPubMed
Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E., & Scheres, S. H. (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife, 7, e42166.10.7554/eLife.42166CrossRefGoogle ScholarPubMed
Vilas, J. L., Gómez-Blanco, J., Conesa, P., Melero, R., de la Rosa-Trevín, J. M., Otón, J., … & Sorzano, C. O. S. (2018). MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure, 26(2), 337344.10.1016/j.str.2017.12.018CrossRefGoogle ScholarPubMed
Ramírez-Aportela, E., Vilas, J. L., Glukhova, A., Melero, R., Conesa, P., Martínez, M., … & Marabini, R. (2020). Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics, 36(3), 765772.Google ScholarPubMed