Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 0.169 Render date: 2021-10-16T05:35:03.799Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Two-dimensional carrier profiling of advanced sub-micron silicon devices using Scanning Capacitance Microscopy

Published online by Cambridge University Press:  02 July 2020

Atul. A. Konkar
Affiliation:
Process and Materials Characterization Laboratory, Motorola, M360, 2200 W Broadway Road, Mesa, AZ85202
Wei Chen
Affiliation:
Process and Materials Characterization Laboratory, Motorola, M360, 2200 W Broadway Road, Mesa, AZ85202
Kari Noehring
Affiliation:
Process and Materials Characterization Laboratory, Motorola, M360, 2200 W Broadway Road, Mesa, AZ85202

Extract

With the continuing push for reduction in the device dimensions into the deep sub-u,m dimensions, the critical need for physical and electrical characterization on this sub-μ,m scale is evident. The National Technology Roadmap has identified need for two-dimensional (2D) dopant/carrier profiling with a spatial resolution of 10 nm. Though current techniques used for dopant profiling such as secondary ion mass spectroscopy (SIMS) and spreading resistance profiling (SRP) have a high sensitivity, these offer good resolution only in the depth direction. The spatial resolution in the lateral direction in these techniques is limited to several tens or hundreds of microns. To acheieve the required lateral spatial resolution different scanning probe based techniques have been explored. One of the most promising of these class of techniques is scanning capacitance microscopy (SCM). In SCM a conductive atomic force microscope (AFM) probe tip is scanned across the surface and simultaneously an a.c. bias is applied between the tip and the sample.

Type
Scanned Probe Microscopy: Much More Than Just Beautiful Images
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 4300 Stevens Creek Blvd., Suite 271, San Jose, CA 95129Google Scholar

2. Diebold, A.C.,Kump, M., Kopanski, J.J., and Seiler, D.G., J. Vac. Sci. Technol. B 14, 196 (1996)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-dimensional carrier profiling of advanced sub-micron silicon devices using Scanning Capacitance Microscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two-dimensional carrier profiling of advanced sub-micron silicon devices using Scanning Capacitance Microscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two-dimensional carrier profiling of advanced sub-micron silicon devices using Scanning Capacitance Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *