Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T06:33:10.990Z Has data issue: false hasContentIssue false

Structure and Growth of Sialoliths: Computed Microtomography and Electron Microscopy Investigation of 30 Specimens

Published online by Cambridge University Press:  04 September 2013

Pedro Nolasco*
Affiliation:
ICEMS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Ana J. Anjos
Affiliation:
Faculty of Dental Medicine, University of Lisbon, Cidade Universitária, 1649-003 Lisboa, Portugal
João M. Aquino Marques
Affiliation:
Faculty of Dental Medicine, University of Lisbon, Cidade Universitária, 1649-003 Lisboa, Portugal
Fernando Cabrita
Affiliation:
Service of Maxillofacial Surgery, Centro Hospitalar de Lisboa Central, Hospital S. José, R. José António Serrano, 1150-199 Lisboa, Portugal
Eduardo Carreiro da Costa
Affiliation:
Service of Maxillofacial Surgery, Centro Hospitalar de Lisboa Central, Hospital S. José, R. José António Serrano, 1150-199 Lisboa, Portugal
António Maurício
Affiliation:
CEGPIST/CERENA, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Manuel F.C. Pereira
Affiliation:
CEGPIST/CERENA, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
António P. Alves de Matos
Affiliation:
Department of Pathological Anatomy, Centro Hospitalar de Lisboa Central, Hospital Curry Cabral, R. da Beneficência, 1069-166 Lisboa, Portugal
Patricia A. Carvalho
Affiliation:
ICEMS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
*
*Corresponding author. E-mail: pedro.nolasco@ist.utl.pt
Get access

Abstract

Theories have been put forward on the etiology of sialoliths; however, a comprehensive understanding of their growth mechanisms is lacking. In an attempt to fill this gap, the current study has evaluated the internal architecture and growth patterns of a set of 30 independent specimens of sialoliths characterized at different scales by computed microtomography and electron microscopy. Tomography reconstructions showed cores in most of the sialoliths. The cores were surrounded by concentric or irregular patterns with variable degrees of mineralization. Regardless of the patterns, at finer scales the sialoliths consisted of banded and globular structures. The distribution of precipitates in the banded structures is compatible with a Liesegang–Ostwald phenomenon. On the other hand, the globular structures appear to arise from surface tension effects and to develop self-similar features as a result of a viscous fingering process. Electron diffraction patterns demonstrated that Ca- and P-based electrolytes crystallize in a structure close to that of hydroxyapatite. The organic matter contained sulfur with apparent origin from sulfated components of secretory material. These results cast new light on the mechanisms involved in the formation of sialoliths.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitão, J. (2005). Ultrastructural and EDS study of sialoliths of the salivary glands. Microsc Microanal 11, 152153.Google Scholar
Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitão, J. (2007). On the structural diversity of sialoliths. Microsc Microanal 13, 390396.CrossRefGoogle ScholarPubMed
Anneroth, G., Isacsson, G. & Lundquist, P.G. (1979). The mineral content of salivary calculi. A quantitative microradiographic and diffractometric study. Dentomaxillofac Rad 8, 3341.CrossRefGoogle ScholarPubMed
Ashby, R.A. (1995). The chemistry of sialoliths—Stones and their homes. In Color Atlas and Text of the Salivary Glands: Diseases, Disorders and Surgery, Norman, J.E.B. & McGurk, M. (Eds.), pp. 243–252, 265–266. London: Mosby-Wolfe.Google Scholar
Bodner, L. (1993). Salivary gland calculi: Diagnostic imaging and surgical management. Compendium 14, 572584.Google Scholar
Boskey, A.L., Boyan-Salyers, B.D., Burstein, L.S. & Mandel, I.D. (1981). Lipids associated with mineralization of human submandibular gland sialoliths. Arch Oral Biol 26, 779785.CrossRefGoogle ScholarPubMed
Capaccio, P., Ottaviani, F., Manzo, R., Schindler, A. & Cesana, B. (2004). Extracorporeal lithotripsy for salivary calculi: A long-term clinical experience. Laryngoscope 114, 10691073.Google Scholar
Damme, V.H., Obrecht, F., Levitz, P., Gatineau, L. & Laroche, C. (1986). Fractal viscous fingering in clay slurries. Nature 320, 731733.Google Scholar
de Temiño, P.R. & Villary Pérezde los Ríos, F. (1948). Calculos salivales. An Esp Odontoestomatol 7, 661673.Google Scholar
Escudier, M. (2001). Epidemiology and aetiology of salivary calculi. In Controversies in the Management of Salivary Gland Disease, McGurk, M. & Renehan, A. (Eds.), pp. 249255. New York: Oxford University Press.Google Scholar
Escudier, M.P., Brown, J.E., Drage, N.A. & McGurk, M. (2003). Extracorporeal shockwave lithotripsy in the management of salivary calculi. Br J Surg 90, 482485.CrossRefGoogle ScholarPubMed
Feldkamp, L.A., Davis, L.C. & Kress, J.W. (1984). Practical cone-beam algorithm. J Opt Soc Am A 1, 612619.Google Scholar
Giray, C.B., Dogan, M., Akalin, A., Baltrusaitis, J., Chan, D.C., Skinner, H.C. & Dogan, A.U. (2007). Sialolith characterization by scanning electron microscopy and X-ray photoelectron spectroscopy. Scanning 29, 206210.CrossRefGoogle ScholarPubMed
Gomes, S., Renaudin, G., Mesbah, A., Jallot, E., Bonhomme, C., Babonneau, F. & Nedelec, J.M. (2010). Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomater 6, 32643274.Google Scholar
Gopal, R., Calvo, C., Ito, J. & Sabine, W.K. (1974). Crystal structure of synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14 . Can J Chem 52, 11551164.Google Scholar
Grases, F., Santiago, C., Simonet, B.M. & Costa-Bauzá, A. (2003). Sialolithiasis: Mechanism of calculi formation and etiologic factors. Clin Chim Acta 334, 131136.Google Scholar
Harrison, J.D. (2007). Natural history of chronic sialadenitis and sialolithiasis. In Modern Management Preserving the Salivary Glands, Nahlieli, O., Iro, H., McGurk, M. & Zenk, J. (Eds.), pp. 93135. Herzeliya, Israel: Isradon Publishing House.Google Scholar
Harrison, J.D. (2009). Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 42, 927947.CrossRefGoogle ScholarPubMed
Henisch, H.K. (1986). Liesegang ring formation in gels. J Cryst Growth 76, 279289.CrossRefGoogle Scholar
Hornbogen, E. (1989). Fractals in microstructure of metals. Int Mater Rev 34, 277296.CrossRefGoogle Scholar
Iro, H., Zenk, J., Escudier, M.P., Nahlieli, O., Capaccio, P., Katz, P., Brown, J. & McGurk, M. (2009). Outcome of minimally invasive management of salivary calculi in 4,691 patients. Laryngoscope 119, 263268.Google Scholar
Isacsson, G. & Hammarström, L. (1983). An enzyme histochemical study of human salivary duct calculi. J Oral Pathol Med 12, 217222.Google Scholar
Karperien, A. (2012). FracLac for ImageJ, version 2.5. http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm. Accessed November 15, 2012.Google Scholar
Kasaboğlu, O., Er, N., Tümer, C. & Akkocaoğlu, M. (2004). Micromorphology of sialoliths in submandibular salivary gland: A scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg 62, 12531258.CrossRefGoogle ScholarPubMed
Kilaas, R. (1987). Interactive simulation of high resolution electron micrographs. In 45th Annual Meeting of the Electron Microscopy Society of America, Bailey, G.W. (Ed.), pp. 6669. San Francisco, CA: San Francisco Press.Google Scholar
Kinoshita, H., Miyoshi, N., Miyoshi, K., Ogawa, T., Ogasawara, T., Kitagawa, Y., Itoh, H. & Sano, K. (2008). Phosphate and amide III mapping in sialoliths with Raman microspectroscopy. J Raman Spectrosc 39, 349353.CrossRefGoogle Scholar
Kraus, W. & Noize, G. (1996). POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29, 301303.Google Scholar
Kutta, H., May, J., Jaehne, M., Münscher, A. & Paulsen, F.P. (2006). Antimicrobial defence mechanisms of the human parotid duct. J Anat 208, 609619.Google Scholar
Lee, L.T. & Wong, Y.K.D. (2010). Pathogenesis and diverse histologic findings of sialolithiasis in minor salivary glands. J Oral Maxillofac Surg 68, 465470.Google Scholar
Liesegang, R.E. (1896). Ueber einige Eigenschaften von Gallerten. Naturwiss Wochenschr 11, 353362.Google Scholar
Lustmann, J. & Shteyer, A. (1981). Salivary calculi: Ultrastructural morphology and bacterial etiology. J Dent Res 60, 13861395.CrossRefGoogle ScholarPubMed
Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. San Francisco, CA: W.H Freeman and Co. Google Scholar
Nolasco, P., Anjos, A.J., Marques, J.M.A., Cabrita, F., Costa, E.C., Alves de Matos, A.P. & Carvalho, P.A. (2012). Structural characterization of salivary calculi. In Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting, Coimbra, Portugal , pp. 15. IEEE.Google Scholar
Ostwald, W. (1925). Zur Theorie der Liesegang'schen Ringe. Kolloid-Z 36, 380390.CrossRefGoogle Scholar
Pereira, L.M. (2010). Fractal pharmacokinetics. Comput Math Methods Med 11, 161184.Google Scholar
Sabot, J.F., Gustin, M.P., Delahougue, K., Faure, F., Machon, C. & Hartmann, D.J. (2012). Analytical investigation of salivary calculi, by mid-infrared spectroscopy. Analyst 137, 20952100.CrossRefGoogle ScholarPubMed
Sakae, T., Yamamoto, H. & Hirai, G. (1981). Mode of occurrence of brushite and whitlockite in a sialolith. J Dent Res 60, 842844.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nat Methods 9, 676682.Google Scholar
Schmitz, S., Zengel, P., Alvir, I., Andratschke, M., Berghaus, A. & Lang, S. (2008). Long-term evaluation of extracorporeal shock wave lithotripsy in the treatment of salivary stones. J Laryngol Otol 122, 6571.Google Scholar
Seifert, G. (1996). Oralpathologie I: Pathologie der Speicheldrüsen. Berlin: Springer.Google Scholar
Siddiqui, S.J. (2002). Sialolithiasis: An unusually large submandibular salivary stone. Br Dent J 193, 8991.Google Scholar
Sinha, S. & Tarafdar, S. (2009). Viscous fingering patterns and evolution of their fractal dimension. Ind Eng Chem Res 48, 88378841.CrossRefGoogle Scholar
SkyScan (2005). SkyScan 1172 Desktop X-Ray Microtomography Instruction Manual. Aartselaar, Belgium: N.V. SkyScan.Google Scholar
Stevenson, K., Ferer, M., Bromhal, G.S., Gump, J., Wilder, J. & Smith, D.H. (2006). 2-D network model simulations of miscible two-phase flow displacements in porous media: Effects of heterogeneity and viscosity. Phys A (Amsterdam, Neth) 15, 724.Google Scholar
Szalma, J., Böddi, K., Lempel, E., Sieroslawska, A.F., Szabó, Z., Harfouche, R., Olasz, L., Takátsy, A. & Guttman, A. (2012). Proteomic and scanning electron microscopic analysis of submandibular sialoliths. Clin Oral Invest. doi:10.1007/s00784-012-0870-6.Google Scholar
Tanaka, N., Ichinose, S., Adachi, Y., Mimura, M. & Kimijima, Y. (2003). Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36, 120126.Google Scholar
Teymoortash, A., Wollstein, A.C., Lippert, B.M., Peldszus, R. & Werner, J.A. (2002). Bacteria and pathogenesis of human salivary calculus. Acta Oto-Laryngol 122, 210214.Google Scholar
Washio, J., Sato, T., Koseki, T. & Takahashi, N. (2005). Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 54, 889895.Google Scholar
Yamamoto, H., Sakae, T., Takagi, M. & Otake, S. (1984). Scanning electron microscopic and X-ray microdiffractometeric studies on sialolith-crystals in human submandibular glands. Acta Pathol Jpn 34, 4753.Google Scholar
Zenk, J., Bozzato, A., Winter, M., Gottwald, F. & Iro, H. (2004). Extracorporeal shock wave lithotripsy of submandibular stones: Evaluation after 10 years. Ann Otol, Rhinol, Laryngol 113, 378383.CrossRefGoogle ScholarPubMed
Zhang, J.-H. & Liu, Z.-H. (1998). Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model. J Pet Sci Eng 21, 123128.Google Scholar

Nolasco et al. supplementary movie

Movie 1

Download Nolasco et al. supplementary movie(Video)
Video 2.8 MB

Nolasco et al. supplementary movie

Movie 2

Download Nolasco et al. supplementary movie(Video)
Video 8.3 MB

Nolasco et al. supplementary movie

Movie 3

Download Nolasco et al. supplementary movie(Video)
Video 5.4 MB