Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.279 Render date: 2022-05-19T00:34:26.401Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Structural and Chemical Characterization of Yb2O3-ZrO2 System by HAADF-STEM and HRTEM

Published online by Cambridge University Press:  15 January 2009

C. Angeles-Chavez*
Affiliation:
Instituto Mexicano del Petroleo, Programa de Ingeniería Molecular, Eje Central Lazaro Cardenas 152, A. P. 14-805, 07730 México, D. F.Mexico
P. Salas
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A. P. 1-1010, Querétaro 76000, Mexico
L.A. Díaz-Torres
Affiliation:
Centro de Investigaciones en Optica, A. P. 1-948, León Gto. 37150, Mexico
E. de la Rosa
Affiliation:
Centro de Investigaciones en Optica, A. P. 1-948, León Gto. 37150, Mexico
R. Esparza
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62210 Cuernavaca, Mor. Mexico
R. Perez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62210 Cuernavaca, Mor. Mexico
*
Corresponding author. E-mail: cangeles@imp.mx

Abstract

ZrO2:Yb3+ nanocrystalline phosphors with high concentrations of ytterbium ions were prepared using the sol-gel method. X-ray diffraction, high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the nanocrystalline phosphors annealed at 1000°C. Unit-cell distortion and changes in the crystalline structure of the monoclinic zirconia to tetragonal zirconia, and subsequently cubic zirconia, were observed with increased Yb concentration. Yb ions were randomly distributed into the lattice of the crystalline structure. No segregation of Yb2O3 phase was observed. The substitution of Zr atoms by Yb atoms on different crystalline phases was confirmed by the experimental results and theoretical simulations of HRTEM and HAADF-STEM.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Capobianco, J.A., Vetrone, F., Boyer, J.C., Speghini, A. & Bettinelli, M. (2002). Enhancement of red emission (4F9/2 f 4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J Phys Chem B 106, 11811187.CrossRefGoogle Scholar
Cortes-Jacome, M.A., Angeles-Chavez, C., Morales, M., Lopez-Salinas, E. & Toledo-Antonio, J.A. (2007). Evolution of titania nanotubes-supported WOx species by in situ thermo Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy. J Solid State Chem 180, 26822689.CrossRefGoogle Scholar
Cortes-Jacome, M.A., Toledo-Antonio, J.A., Armendariz, H., Hernandez, I. & Bokhimi, X. (2002). Solid solutions of WO3 into zirconia in WO3-ZrO2 catalysts. J Solid State Chem 164, 339344.CrossRefGoogle Scholar
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst 10, 609619.CrossRefGoogle Scholar
De la Rosa, E., Salas, P., Diaz-Torres, L.A., Martinez, A. & Angeles, C. (2005). Strong visible cooperative up-conversion emission in ZrO2:Yb3+ nanocrystals. J Nanosci Nanotechnol 5, 14801486.CrossRefGoogle ScholarPubMed
Dos Santos, P.V., Vermelho, M.V.D., Gouveia, E.A., De Araujo, M.T. & Gouveia-Neto, A.S. (2002). Blue cooperative luminescence in Yb+3-doped tellurite glasses exrefd at 1.064 micrometer. J Chem Phys 116, 67726776.CrossRefGoogle Scholar
Gomez, A. & Beltran del Rio, L.M. (2001). Simulatem: A program for the multislice simulation of images and diffraction patterns of non-crystallines objects. Metal Mater 21, 4650.Google Scholar
Guo, H., Dong, N., Yin, M., Zhang, W., Lou, L. & Xia, S. (2004). Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B 108, 1920519209.CrossRefGoogle Scholar
Kirkland, E.J., Loane, R.F. & Silcox, J. (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.CrossRefGoogle Scholar
Patra, A., Friend, C.S., Kapoor, R. & Prasad, P.N. (2002). Upconversion in Er3+:ZrO2 nanocrystals. J Phys Chem B 106, 19091912.CrossRefGoogle Scholar
Pennycook, S.J. & Jesson, D.E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 1438.CrossRefGoogle Scholar
Perez-Omil, J.A., Bernal, S., Calvino, J.J., Hernandez, J.C., Mira, C., Rodriguez-Luque, M.P., Erni, R. & Browning, N.D. (2005). Combined HREM and HAADF scanning transmission electron microscopy: A powerful tool for investigation structural changes in thermally aged ceria-zirconia mixed oxides. Chem Mater 17, 42824285.CrossRefGoogle Scholar
Qin, G., Qin, W., Wu, C., Huang, S., Zhang, J., Lu, S., Zhao, D. & Liu, H. (2003). Enhancement of ultraviolet upconversion in Yb3+ and Tm3+ codoped amorphous fluoride film prepared by pulsed laser deposition. J Appl Phys 93, 43284330.CrossRefGoogle Scholar
Riello, P., Bucella, S., Krsmanovic, R., Meneghetti, S., Pietrantoni, S. & Francini, R. (2005). Synthesis, X-ray diffraction characterization, and radioactive properties of Er2O3-ZrO2 nanocrystals embedded in LAS glass ceramic. J Phys Chem B 109, 1342413430.CrossRefGoogle Scholar
Salas, P., Angeles-Chavez, C., Montoya, J.A., De La Rosa, E., Diaz-Torres, L.A., Desirena, H., Martinez, A., Romero-Romo, M.A. & Morales, J. (2005). Synthesis, characterization and luminescence properties of ZrO2:Yb3+–Er3+ nanophosphor. Opt Mater 27, 12951300.CrossRefGoogle Scholar
Schmidt, T., Muller, G., Spanhel, L., Kerkel, K. & Forchel, A. (1998). Activation of 1.54 μm Er3+ fluorescence in concentrated II-VI semiconductor cluster environments. Chem Mater 10, 6571.CrossRefGoogle Scholar
Tanaka, N., Hu, J.J. & Baba, N. (1999). An on-line correction method of defocus and astigmatism in HAADF-STEM. Ultramicroscopy 78, 103110.CrossRefGoogle Scholar
Thompson, P., Cox, D.E. & Hasting, J.B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20, 7982.CrossRefGoogle Scholar
Utsunomiya, S. & Ewing, R.C. (2003). Application of high-angle annular dark field scanning transmission electron microscopy-energy dispersive X-ray spectrometry and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37, 786791.CrossRefGoogle Scholar
Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A. & Bettinelli, M. (2003). Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+. J Phys Chem B 107, 11071112.CrossRefGoogle Scholar
Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H. & Gossmann, H.J.L. (2002). Atomic-scale image of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826829.CrossRefGoogle Scholar
Yi, G., Sun, B., Yang, F., Chen, D., Zhou, Y. & Cheng, J. (2002). Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate. Chem Mater 14, 29102914.CrossRefGoogle Scholar
Young, R.A., Sakthivel, A., Moss, T.S. & Paiva-Santos, C.O. (1995). DBWS-9411—An upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J Applied Crystallogr 28, 366367.CrossRefGoogle Scholar
Zhang, F., Jin, Q. & Chan, S.W. (2004). Ceria nanoparticles: Size, size distribution, and shape. J Appl Phys 95, 218979.CrossRefGoogle Scholar
Zhang, Y., Jin, S., Liao, C.H. & Yan, C.H. (2002). Microstructures and optical properties of nanocrystalline rare earth stabilized zirconia thin films deposited by a simple sol–gel method. Mater Lett 56, 10301034.CrossRefGoogle Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structural and Chemical Characterization of Yb2O3-ZrO2 System by HAADF-STEM and HRTEM
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structural and Chemical Characterization of Yb2O3-ZrO2 System by HAADF-STEM and HRTEM
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structural and Chemical Characterization of Yb2O3-ZrO2 System by HAADF-STEM and HRTEM
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *