Hostname: page-component-7d684dbfc8-4nnqn Total loading time: 0 Render date: 2023-09-23T07:53:37.988Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Optimizing Atom Probe Analysis with Synchronous Laser Pulsing and Voltage Pulsing

Published online by Cambridge University Press:  08 February 2017

Lu Zhao*
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Antoine Normand
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Jonathan Houard
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Ivan Blum
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Fabien Delaroche
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Olivier Latry
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Blaise Ravelo
IRSEEM EA 4353, at the Graduate School of Engineering, ESIGELEC, 76800 Saint-Etienne-du-Rouvray, France
Francois Vurpillot
INSA Rouen, UNIROUEN, CNRS, GPM, Normandie Université, 76000 Rouen, France
Get access


Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arnoldi, L., Silaeva, E.P., Vurpillot, F., Deconihout, B., Cadel, E., Blum, I. & Vella, A. (2014). Role of the resistivity of insulating field emitters on the energy of field-ionised and field-evaporated atoms. Ultramicroscopy 159, 139146.CrossRefGoogle ScholarPubMed
Auston, D.H. (1975). Picosecond optoelectronic switching and gating in silicon. Appl Phys Lett 101, 2427.Google Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.CrossRefGoogle ScholarPubMed
Cerezo, A., Godfrey, T.J., Huang, M. & Smith, G.D.W. (2000). Design of a scanning atom probe with improved mass resolution. Rev Sci Instrum 71, 3016.CrossRefGoogle Scholar
Cerezo, A. & Vaumousse, D. (2001). Numerical modelling of mass resolution in a scanning atom probe. Ultramicroscopy 89, 155161.CrossRefGoogle Scholar
Cornish, T.J. & Cotter, R.J. (1993). A curved-field reflectron for improved energy focusing of product ions in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 7, 10371040.CrossRefGoogle ScholarPubMed
Forbes, R. & Chibane, K. (1986). Derivation of an activation energy formula in the context of charge draining. J Phys Colloq 47(C), C7C65.CrossRefGoogle Scholar
Forbes, R.G. (1978). Field evaporation theory: The atomic-jug formalism. Surf Sci 70, 239254.CrossRefGoogle Scholar
Forbes, R.G. (1982). New activation-energy formulae for charge-exchange type mechanisms of field evaporation. Surf Sci Lett 116, L195L201.Google Scholar
Gault, B., Michael, P.M., Julie, M.C. & Simon, P.R. (2012). Atom Probe Microscopy. Vol. 160. New York: Springer Science & Business Media.Google Scholar
Gipson, G. (1980). An improved empirical formula for the electric field near the surface of field emitters. J Appl Phys 51, 3884.CrossRefGoogle Scholar
Grennan-Heaven, N., Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (2007). Optimisation of a scanning atom probe with improved mass resolution using post deceleration. Ultramicroscopy 107, 705712.CrossRefGoogle ScholarPubMed
Gruber, M., Vurpillot, F., Bostel, A. & Deconihout, B. (2011). Field evaporation: A kinetic Monte Carlo approach on the influence of temperature. Surf Sci 605, 20252031.CrossRefGoogle Scholar
Houard, J. (2010). Effet de champ sous éclairement ultra-bref ‘Application à la sonde atomique.’ Université de Rouen Available at (Accessed April 1, 2016).Google Scholar
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81, 125411.CrossRefGoogle Scholar
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2011). Three-dimensional thermal response of a metal subwavelength tip under femtosecond laser illumination. Phys Rev B 84, 33405.CrossRefGoogle Scholar
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76–77, 382391.CrossRefGoogle Scholar
Kellogg, G.L. (1984). Measurement of activation energies for field evaporation of tungsten ions as a function of electric field. Phys Rev B 29(8), 4304.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 1184.CrossRefGoogle Scholar
Kelly, T. (2011). Kinetic-energy discrimination for atom probe tomography. Microsc Microanal 17(1), 114.CrossRefGoogle ScholarPubMed
Kelly, T., Camus, P., Larson, D. & Holzman, L. (1995). High mass resolution local-electrode atom probe. US Patent, August 8, 1995. Available at Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 2942.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Charact 44, 5985.CrossRefGoogle Scholar
Krishnaswamy, S.V. (1974). Premature field evaporation in the atom probe. Rev Sci Instrum 45, 1049.CrossRefGoogle Scholar
Krishnaswamy, S.V. & Muller, E.W. (1974). Energy deficits in pulsed field evaporation and deficit compensated atom-probe designs. Rev Sci Instrum 45, 10531059.Google Scholar
Lee, C.H. (1977). Picosecond optoelectronic switching in GaAs. Appl Phys Lett 30, 84.CrossRefGoogle Scholar
Loi, S.T., Gault, B., Ringer, S.P., Larson, D.J. & Geiser, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.CrossRefGoogle ScholarPubMed
Mancini, L., Amirifar, N., Shinde, D., Blum, I., Gilbert, M., Vella, A., Vurpillot, F., Lefebvre, W., Lardé, R., Talbot, E., Pareige, P., Portier, X., Ziani, A., Davesnne, C., Durand, C., Eymery, J., Butté, R., Carlin, J.-F., Grandjean, N. & Rigutti, L. (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Miller, M.K. (2014). Atom Probe Tomography: The Local Electrode Atom Probe. New York: Springer.CrossRefGoogle Scholar
Müller, E.W. (1956). Field desorption. Phys Rev 102, 618624.CrossRefGoogle Scholar
Müller, E.W. & Müller, E.W. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39, 83.CrossRefGoogle Scholar
Nishikawa, O. & Kimoto, M. (1994). Toward a scanning atom probe—computer simulation of electric field. Appl Surf Sci 76–77, 424430.CrossRefGoogle Scholar
Panitz, J.A.A. (1973). The 10 cm atom probe. Rev Sci Instrum 44, 10341038.CrossRefGoogle Scholar
Poschenrieder, W. (1971). Multiple-focusing time of flight mass spectrometers part I. Tofms with equal momentum acceleration. Int J Mass Spectrom Ion Phys 6(5–6), 413426.CrossRefGoogle Scholar
Poschenrieder, W. (1972). Multiple-focusing time-of-flight mass spectrometers part II. TOFMS with equal energy acceleration. Int J Mass Spectrom Ion Phys 9(4), 357373.CrossRefGoogle Scholar
Sakurai, T. & Müller, E.W. (1973). Field calibration using the energy distribution of a free-space field ionization. Phys Rev Lett 30, 532535.CrossRefGoogle Scholar
Sévelin-Radiguet, N., Arnoldi, L., Vurpillot, F., Normand, A., Deconihout, B. & Vella, A. (2015). Ion energy spread in laser-assisted atom probe tomography. Europhys Lett 109, 37009.CrossRefGoogle Scholar
Sijbrandij, S.J., Cerezo, A. & Smith, G.D.W. (1995). Improvements in the transmission of voltage evaporation pulses in the atom probe. Appl Surf Sci 87–88, 414420.CrossRefGoogle Scholar
Stearns, D.G. (1989). Electro-optic sampling of ultrashort high voltage pulses. J Appl Phys 65, 1308.CrossRefGoogle Scholar
Tsong, T.T. (1971). Measurement of the polarizabilities and field evaporation rates of individual tungsten atoms. J Chem Phys 54, 4205.CrossRefGoogle Scholar
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy 111, 12861294.CrossRefGoogle ScholarPubMed
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42, 125502.CrossRefGoogle Scholar
Vurpillot, F. & Oberdorfer, C. (2014). Modeling atom probe tomography: A review. Ultramicroscopy 159, 202216.CrossRefGoogle ScholarPubMed
Zhao, L., Delamare, A., Normand, A., Delaroche, F., Latry, O., Vurpillot, F. & Ravelo, B. (2015). RF transient pulse signal integrity with ns-duration for atom-probe tomography. In Radio and Antenna Days of the Indian Ocean (RADIO), Mauritius, pp. 1–2.Google Scholar
Zhao, L., Normand, A., Delaroche, F., Ravelo, B. & Vurpillot, F. (2015). Pulse shaping optimization for improving atom probe tomography. Int J Mass Spectrom 386, 4753.CrossRefGoogle Scholar