Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.185 Render date: 2021-07-29T20:16:33.285Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nanoscale Precipitation in a Maraging Steel Studied by APFIM

Published online by Cambridge University Press:  01 June 2004

Krystyna Stiller
Affiliation:
Department of Experimental Physics, Chalmers University of Technology, SE-412 996 Göteborg, Sweden
Mats Hättestrand
Affiliation:
R&D Centre, AB Sandvik Steel, SE- 811 81 Sandviken, Sweden

Abstract

This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475°C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrén, H-O. (1986). J Phys 47-C7, 483488.
Bostel, A., Blavette, D., Menand, A., & Sarrau, J.M. (1989). J de Phys (Paris) C8-50, 501.
Davies, D.M. & Ralph, B. (1972). J Microsc 96, 343.
Fourlaris, G., Baker, A.J., & Papadimitrious, G.D. (1995). Acta Metall Mater 43, 25892604.
Goodman, S.R., Brenner, S.S., & Low, J.R., Jr. (1973). Met Trans 4, 2371.
Hättestrand, M., Nilsson, J.O., Liu, P., & Stiller, K. (2004). Acta Metall 52, 10231037.
Liu, P., Stigenberg, A.M., & Nilsson, J.O. (1995). Acta Metall 43, 2881.
Miller, M.K., Cerezo, A., Hetherington, M.G., & Smith, G.D. (1996). In Atom Probe Field Ion Microscopy, Oxford, UK: Oxford Science Publications, Clarendon Press.
Nilsson, J.O., Stigenberg, A.M., & Liu, P. (1994). Metall Mat Trans A 25A, 2225.
Sha, W., Cerezo, A., & Smith, G.D.W. (1993). Metall Trans 24A, 12211251.
Stigenberg, A.M., Nilsson, J.O., Liu, P., & Wilson, A. (1994). Wire 44, 375.
Stiller, K., Danoix, F., & Bostel, A. (1996). Appl Surf Sci 94/95, 326333.
Stiller, K., Danoix, F., & Hättestrand, M. (1998a). Mat Sci Eng A 250, 2226.
Stiller, K., Hättestrand, M., & Danoix, F. (1998b). Acta Mater 46, 60636073.
Vasudevan, V.K., Kim, S.J., & Wayman, C.M. (1988). In Maraging Steels: Recent Development and Applications, R.K. Wilson, (Ed.), p. 283. Warrendale, PA: TMS-AIME.
Vurpillot, F., Bostel, A., & Blavette, D. (2000). Appl Phys Lett 56, 31273129.
4
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoscale Precipitation in a Maraging Steel Studied by APFIM
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoscale Precipitation in a Maraging Steel Studied by APFIM
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoscale Precipitation in a Maraging Steel Studied by APFIM
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *