Hostname: page-component-788cddb947-2s2w2 Total loading time: 0 Render date: 2024-10-07T21:48:35.667Z Has data issue: false hasContentIssue false

Low-Voltage Electron-Probe Microanalysis of Fe–Si Compounds Using Soft X-Rays

Published online by Cambridge University Press:  28 August 2013

Phillip Gopon*
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
John Fournelle
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
Peter E. Sobol
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
Xavier Llovet
Affiliation:
CCiTUB, University of Barcelona, ES-08028 Barcelona, Spain
*
*Corresponding author. E-mail: pgopon@geology.wisc.edu
Get access

Abstract

Conventional electron-probe microanalysis has an X-ray analytical spatial resolution on the order of 1–4 μm width/depth. Many of the naturally occurring Fe–Si compounds analyzed in this study are smaller than 1 μm in size, requiring the use of lower accelerating potentials and nonstandard X-ray lines for analysis. Problems with the use of low-energy X-ray lines (soft X-rays) of iron for quantitative analyses are discussed and a review is given of the alternative X-ray lines that may be used for iron at or below 5 keV (i.e., accelerating voltage that allows analysis of areas of interest <1 μm). Problems include increased sensitivity to surface effects for soft X-rays, peak shifts (induced by chemical bonding, differential self-absorption, and/or buildup of carbon contamination), uncertainties in the mass attenuation coefficient for X-ray lines near absorption edges, and issues with spectral resolution and count rates from the available Bragg diffractors. In addition to the results from the traditionally used Fe Lα line, alternative approaches, utilizing Fe Lβ, and Fe Ll-η lines, are discussed.

Type
Techniques and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, M., Taylor, L.A., Nazarov, M.A., Shu, J., Mao, H.K. & Hemley, R.J. (2004). Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proc Natl Acad Sci USA 101, 68476851.CrossRefGoogle ScholarPubMed
Anderson, C.A. (1967). The quality of X-ray microanalysis in the ultra-soft X-ray region. Br J Appl Phys 18, 10331043.CrossRefGoogle Scholar
Armstrong, J. (2011). Low voltage and low overvoltage X-ray nanoanalysis with field emission electron microprobes and SEMs: Problems in quantitation for first-row transition elements. 2011 AGU Fall Meeting, San Francisco, CA. Google Scholar
Castaing, R. (1951). Application of electron probes to local chemical and crystallographic analysis. Thesis, University of Paris, Publication O.N.E.R.A, No. 55. Google Scholar
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A., Zucker, D.S. (2005). X-ray form factor, attenuation, and scattering tables. Available at www.nist.gov/pml/data/ffast/index.cfm.Google Scholar
Chopra, D. (1970). Ni L self-absorption spectrum. Phys Rev A 1, 230235.CrossRefGoogle Scholar
Deslattes, R.D. (1969). Estimates of X-ray attenuation coefficients for the elements and their compounds. Acta Cryst A25, 8993.CrossRefGoogle Scholar
Deslattes, R.D., Kessler, E.G., Indelicato, P., DeBilly, L., Lindroth, E. & Anton, J. (2003). X-ray transition energies: New approach to a comprehensive evaluation. Rev Mod Phys 75, 3599.CrossRefGoogle Scholar
Donovan, J.J., Kremser, D., Fournelle, J. & Goemann, K. (2012). Probe for EPMA: Users Guide and Reference. Available at ProbeSoftware.com.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.CrossRefGoogle ScholarPubMed
Eisebitt, S. & Rubensson, J. (1994). Electronic structure of buried a-FeSi2 and B-FeSi2 layers. Phys Rev B 50, 330340.CrossRefGoogle ScholarPubMed
Essene, E.J. & Fisher, D.C. (1986). Lightning strike fusion: Extreme reduction and metal-silicate liquid immiscibility. Science 234, 189193.CrossRefGoogle ScholarPubMed
Fialin, M., Wagner, C., Metrich, N., Humler, E., Galoisy, L. & Bezos, A. (2001). Fe 3 + / ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe. Amer Mineral 86, 456465.CrossRefGoogle Scholar
Fialin, M., Wagner, C. & Remond, G. (1998). X-ray emission valence band spectrometry: Application to Cu and Fe L-series. EMAS 98, 129140.Google Scholar
Fischer, D.W. & Baun, W.L. (1967). Self-absorption effects in the soft X-Ray Mα and Mβ emission spectra of the rare earth elements. J Appl Phys 38, 48304836.CrossRefGoogle Scholar
Gopon, P., Fournelle, J. & Llovet, X. (2012). Soft X-ray EPMA of submicron phase lunar Fe–Si compounds. Microsc Microanal 18(Suppl 2), 17281729.CrossRefGoogle Scholar
Gopon, P., Sobol, P.E. & Fournelle, J. (2013). Random spectrometer motion for removal of time dependent artifacts in spectroscopy. Microsc Microanal 19(Suppl 2), 814815.CrossRefGoogle Scholar
Heinrich, K.F.J. (1966). X-ray absorption uncertainty. In The Electron Microprobe, McKinley, T.D., Heinrich, K.F.J. & Wittry, D.B. (Eds.), pp. 296377. New York: John Wiley & Sons.Google Scholar
Heinrich, K.F.J. (1987). Mass attenuation coefficients for electron microprobe microanalysis. In Proc. 11th International Congress on X-Ray Optics and Microsanalysis, London, Ontario, Canada, 1986 , pp. 67119.Google Scholar
Henke, B.L., Lee, P., Tanaka, T.J., Shimabukro, R.L. & Fijikawa, B.K. (1982). Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection: E = 100–2000 eV Z = 1–94. Atomic Data Nucl Data Tables 27, 1144.CrossRefGoogle Scholar
Henke, B.L., White, R. & Lundberg, B. (1957). Semi-empirical determination of mass absorption coefficients for the 5 to 50 angstrom X-ray region. J Appl Phys 28, 98105.CrossRefGoogle Scholar
Höfer, H.E. & Brey, G.P. (2007). The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis. Am Mineral 92, 873885.CrossRefGoogle Scholar
Kerur, B.R., Thontdarya, S.R. & Hanumaiah, B. (1993). X-ray attenuation coefficients at 6.46 keV and the validity of the mixture rule for compounds. X-Ray Spectrom 22, 1316.CrossRefGoogle Scholar
Llovet, X., Heikinheimo, E., Núñez, A., Merlet, C., Almagro, J., Richter, S., Fournelle, J. & van Hoek, C. (2012). An inter-laboratory comparison of EPMA analysis of alloy steel at low voltage. In IOP Conf Ser: Mater Sci Eng 32, 114.CrossRefGoogle Scholar
Mackenzie, A.P. (1993). Recent progress in electron-probe microanalysis. Rep Prog Phys 56, 557604.CrossRefGoogle Scholar
Ohnuma, I., Abe, S., Shimenouchi, S., Omori, T. & Kainuma, R. (2012). Experimental and thermodynamic studies of the Fe-Si binary system. ISIJ Inte 52, 540548.CrossRefGoogle Scholar
Okamoto, H. (1990). Fe–Si (iron–silicon). In Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B. (Ed.), pp. 17711772. Materials Park, OH: ASM International.Google Scholar
O'Nions, R.K. & Smith, D.G.W. (1971). Investigation the LII, III emission spectra of Fe by electron microprobe: Part 2. The Fe LII, III spectra of Fe and Fe–Ti oxides. Am Mineral 56, 14521455.Google Scholar
Pouchou, J.L. (1996). Use of soft X-rays in microanalysis. Mikrochim Acta (Suppl) 12, 3960.Google Scholar
Pouchou, J.L. & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis. I.—application to the analysis of homogeneous samples. Rech Aerosp 3, 167192.Google Scholar
Pouchou, J.L., Pichoir, F. & Boivin, D. (1990). XPP procedure applied to quantitative EDS X-ray analysis in the SEM. In Microbeam Analysis, Michael, J.R. & Ingram, P. (Eds.), pp. 120126. San Francisco, CA: San Francisco Press.Google Scholar
Rietmeijer, F., Nakamura, T., Tsuchiyama, A., Uesugi, K., Nakano, T. & Leroux, H. (2008). Origin and formation of iron silicide phases in the aerogel of the Stardust mission. Meteoritics and Planet Sci 1/2, 121134.CrossRefGoogle Scholar
Ritchie, N.W.M. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.CrossRefGoogle ScholarPubMed
Sokaras, D., Kochur, A., Müller, M., Kolbe, M., Beckhoff, B., Mantler, M., Zarkadas, C., Andrianis, M., Lagoyannis, A. & Karydas, A. (2011). Cascade L-shell soft-X-ray emission as incident X-ray photons are tuned across the 1s ionization threshold. Phys Rev A 83, 112.CrossRefGoogle Scholar
Spicuzza, M.J., Valley, J.V., Fournelle, J., Huberty, J.M. & Treiman, A. (2011). Native silicon and Fe-silicides from the Apollo 16 lunar regolith: Extreme reduction, metal-silicate immiscibility, and shock melting. 42nd Lunar and Planet Sci Conf (2011) 97, 1617.Google Scholar