Hostname: page-component-797576ffbb-xmkxb Total loading time: 0 Render date: 2023-12-03T15:28:51.870Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature

Published online by Cambridge University Press:  25 February 2016

Sina Baier
Affiliation:
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Christian D. Damsgaard
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark Center for Individual Nanoparticle Functionality, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Maria Scholz
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
Federico Benzi
Affiliation:
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Amélie Rochet
Affiliation:
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Robert Hoppe
Affiliation:
Institute of Structural Physics, Technische Universität Dresden, 01062 Dresden, Germany
Torsten Scherer
Affiliation:
Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Junjie Shi
Affiliation:
Angewandte und Physikalische Chemie, University of Bremen, 28359 Bremen, Germany
Arne Wittstock
Affiliation:
Angewandte und Physikalische Chemie, University of Bremen, 28359 Bremen, Germany
Britta Weinhausen
Affiliation:
European Synchrotron Radiation Facility, 38043 Grenoble, France
Jakob B. Wagner
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Christian G. Schroer
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
Jan-Dierk Grunwaldt*
Affiliation:
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
*
*Corresponding author. grunwaldt@kit.edu
Get access

Abstract

A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, L.F., Borisevich, A., Deng, W., Si, R., Flytzani-Stephanopoulos, M. & Overbury, S.H. (2009a). Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J Electron Microsc 58, 199212.Google Scholar
Allard, L.F., Flytzani-Stephanopoulos, M. & Overbury, S.H. (2009b). A novel heating technology for ultra-high resolution imaging in electron microscopes. Microscopy Today 17, 5055.Google Scholar
Andreasen, J.W., Rasmussen, F.B., Helveg, S., Molenbroek, A., Stahl, K., Nielsen, M.M. & Feidenhans’l, R. (2006). Activation of a Cu/ZnO catalyst for methanol synthesis. J Appl Crystallogr 39, 209221.Google Scholar
Bagge-Hansen, M., Wichmann, A., Wittstock, A., Lee, J.R.I., Ye, J., Willey, T.M., Kuntz, J.D., van Buuren, T., Biener, J., Bäumer, M. & Biener, M.M. (2014). Quantitative phase composition of TiO2-coated nanoporous Au monoliths by X-ray absorption spectroscopy and correlations to catalytic behavior. J Phys Chem C 118, 40784084.Google Scholar
Bañares, M.A. (2005). Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100, 7177.Google Scholar
Beale, A.M., Jacques, S.D.M. & Weckhuysen, B.M. (2010). Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev 39, 46564672.Google Scholar
Beckers, M., Senkbeil, T., Gorniak, T., Reese, M., Giewekemeyer, K., Gleber, S.-C., Salditt, T. & Rosenhahn, A. (2011). Chemical contrast in soft X-ray ptychography. Phys Rev Lett 107, 208101/14.Google Scholar
Benavidez, A.D., Kovarik, L., Genc, A., Agrawal, N., Larsson, E.M., Hansen, T.W., Karim, A.M. & Datye, A.K. (2012). Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts. ACS Catal 2, 23492356.Google Scholar
Biener, J., Wittstock, A., Biener, M.M., Nowitzki, T., Hamza, A.V. & Bäumer, M. (2010). Effect of surface chemistry on the stability of gold nanostructures. Langmuir 26, 1373613740.Google Scholar
Buurmans, I.L.C. & Weckhuysen, B.M. (2012). Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4, 873886.Google Scholar
Camus, J., Girard, F. & Clark, R. (1967). Fresnel zone plate generation. Appl Opt 6, 1433.Google Scholar
Cats, K.H., Gonzalez-Jimenez, I.D., Liu, Y., Nelson, J., van Campen, D., Meirer, F., van der Eerden, A.M.J., de Groot, F.M.F., Andrews, J.C. & Weckhuysen, B.M. (2013). X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem Commun 49, 46224624.Google Scholar
Chen-Wiegart, Y.-C.K., Wang, S., Chu, Y.S., Liu, W., McNulty, I., Voorhees, P.W. & Dunand, D.C. (2012). Structural evolution of nanoporous gold during thermal coarsening. Acta Mater 60, 49724981.Google Scholar
Chu, Y.S., Yi, J.M., De Carlo, F., Shen, Q., Lee, W.-K., Wu, H.J., Wang, C.L., Wang, J.Y., Liu, C.J., Wang, C.H., Wu, S.R., Chien, C.C., Hwu, Y., Tkachuk, A., Yun, W., Feser, M., Liang, K.S., Yang, C.S., Je, J.H. & Margaritondo, G. (2008). Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. Appl Phys Lett 92, 103119/13.Google Scholar
Clark, J.N., Beitra, L., Xiong, G., Higginbotham, A., Fritz, D.M., Lemke, H.T., Zhu, D., Chollet, M., Williams, G.J., Messerschmidt, M., Abbey, B., Harder, R.J., Korsunsky, A.M., Wark, J.S. & Robinson, I.K. (2013). Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341, 5659.Google Scholar
Clark, J.N., Ihli, J., Schenk, A.S., Kim, Y.-Y., Kulak, A.N., Campbell, J.M., Nisbet, G., Meldrum, F.C. & Robinson, I.K. (2015). Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nat Mater 14, 780784.Google Scholar
Clausen, B.S., Steffensen, G., Fabius, B., Villadsen, J., Feidenhansl, R. & Topsoe, H. (1991). Insitu cell for combined XRD and online catalysis tests - studies of Cu-based water gas shift and methanol synthesis. J Catal 132, 524535.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.Google Scholar
Dam, H.F., Andersen, T.R., Pedersen, E.B.L., Thyden, K.T.S., Helgesen, M., Carle, J.E., Jorgensen, P.S., Reinhardt, J., Sondergaard, R.R., Jorgensen, M., Bundgaard, E., Krebs, F.C. & Andreasen, J.W. (2015). Enabling flexible polymer tandem solar cells 3D ptychographic imaging. Adv Energy Mater 5, 1400736/16.Google Scholar
de Groot, F.M.F., de Smit, E., van Schooneveld, M.M., Aramburo, L.R. & Weckhuysen, B.M. (2010). In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11, 951962.Google Scholar
de Smit, E., Swart, I., Creemer, J.F., Hoveling, G.H., Gilles, M.K., Tyliszczak, T., Kooyman, P.J., Zandbergen, H.W., Morin, C., Weckhuysen, B.M. & de Groot, F.M.F. (2008). Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456, 222239.Google Scholar
Ding, W., Klumpp, M., Lee, S., Reuß, S., Al-Thabaiti, S.A., Pfeifer, P., Schwieger, W. & Dittmeyer, R. (2015). Simulation of one-stage dimethyl ether synthesis over a core-shell catalyst. Chem Ing Tech 87, 702712.Google Scholar
Drake, I.J., Liu, T.C.N., Gilles, M., Tyliszczak, T., Kilcoyne, A.L.D., Shuh, D.K., Mathies, R.A. & Bell, A.T. (2004). An in situ cell for characterization of solids by soft X-ray absorption. Rev Sci Instrum 75, 32423247.Google Scholar
Dumee, L.F., She, F., Duke, M., Gray, S., Hodgson, P. & Kong, L. (2014). Fabrication of meso-porous sintered metal thin films by selective etching of silica based sacrificial template. Nanomaterials 4, 686699.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Esmaeili, M., Floystad, J.B., Diaz, A., Høydalsvik, K., Guizar-Sicairos, M., Andreasen, J.W. & Breiby, D.W. (2013). Ptychographic X-ray tomography of silk fiber hydration. Macromolecules 46, 434439.Google Scholar
Falcone, R., Jacobsen, C., Kirz, J., Marchesini, S., Shapiro, D. & Spence, J. (2011). New directions in X-ray microscopy. Contemp Phys 52, 293318.Google Scholar
Frenkel, A.I. & van Bokhoven, J.A. (2014). X-ray spectroscopy for chemical and energy sciences: the case of heterogeneous catalysis. J Synchrotron Radiat 21, 10841089.Google Scholar
Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J. & Chen, M. (2012). Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11, 775780.Google Scholar
Gonzalez-Jimenez, I.D., Cats, K., Davidian, T., Ruitenbeek, M., Meirer, F., Liu, Y., Nelson, J., Andrews, J.C., Pianetta, P., de Groot, F.M.F. & Weckhuysen, B.M. (2012). Hard X-ray nanotomography of catalytic solids at work. Angew Chem, Int Ed 51, 1198611990.Google Scholar
Grunwaldt, J.-D. & Frenkel, A.I. (2009). Synchrotron studies of catalysts: from XAFS to QEXAFS and beyond. Synchrotron Radiat News 22, 24.Google Scholar
Grunwaldt, J.-D. & Schroer, C.G. (2010). Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev 39, 47414753.Google Scholar
Grunwaldt, J.-D., Wagner, J.B. & Dunin-Borkowski, R.E. (2013). Imaging catalysts at work. A hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 6280.Google Scholar
Grunwaldt, J.D., Caravati, M., Hannemann, S. & Baiker, A. (2004). X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6, 30373047.Google Scholar
Grunwaldt, J.D. & Clausen, B.S. (2002). Combining XRD and EXAFS with on-line catalytic studies for in situ characterization of catalysts. Top Catal 18, 3743.Google Scholar
Güttel, R. (2015). Structuring of reactors and catalysts on multiple scales: potential and limitations for Fischer-Tropsch synthesis. Chem Ing Tech 87, 694701.Google Scholar
Hansen, T.W., Delariva, A.T., Challa, S.R. & Datye, A.K. (2013). Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46, 17201730.Google Scholar
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J. & Delmon, B. (1993). Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144, 175192.Google Scholar
Hitchcock, A.P. & Toney, M.F. (2014). Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications. J Synchrotron Radiat 21, 10191030.Google Scholar
Hoppe, R., Reinhardt, J., Hofmann, G., Patommel, J., Grunwaldt, J.D., Damsgaard, C.D., Wellenreuther, G., Falkenberg, G. & Schroer, C.G. (2013). High-resolution chemical imaging of gold nanoparticles using hard X-ray ptychography. Appl Phys Lett 102, 203104203104.Google Scholar
Høydalsvik, K., Floystad, J.B., Zhao, T., Esmaeili, M., Diaz, A., Andreasen, J.W., Mathiesen, R.H., Ronning, M. & Breiby, D.W. (2014). In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. Appl Phys Lett 104, 241909/15.Google Scholar
Iizuka, Y., Kawamoto, A., Akita, K., Daté, M., Tsubota, S., Okumura, M. & Haruta, M. (2004). Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation. Catal Rev - Sci Eng 97, 203208.Google Scholar
Iwasawa, Y. (1996). X-ray absorption fine structure for catalysts and surfaces. Singapore: World Scientific.Google Scholar
Kiss, A.M., Harris, W.M., Nakajo, A., Wang, S., Vila-Comamala, J., Deriy, A. & Chiu, W.K.S. (2015). In situ heater design for nanoscale synchrotron-based full-field transmission X-ray microscopy. Microsc Microanal 21, 290297.Google Scholar
Krüger, S.P., Neubauer, H., Bartels, M., Kalbfleisch, S., Giewekemeyer, K., Wilbrandt, P.J., Sprung, M. & Salditt, T. (2012). Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties. J Synchrotron Radiat 19, 227236.Google Scholar
Lengeler, B., Schroer, C.G., Richwin, M., Tummler, J., Drakopoulos, M., Snigirev, A. & Snigireva, I. (1999). A microscope for hard X-rays based on parabolic compound refractive lenses. Appl Phys Lett 74, 39243926.Google Scholar
Luu, M.B., van Riessen, G.A., Abbey, B., Jones, M.W.M., Phillips, N.W., Elgass, K., Junker, M.D., Vine, D.J., McNulty, I., Cadenazzi, G., Millet, C., Tilley, L., Nugent, K.A. & Peele, A.G. (2014). Fresnel coherent diffractive imaging tomography of whole cells in capillaries. New J Phys 16, 093012/115.Google Scholar
Maiden, A.M. & Rodenburg, J.M. (2009). An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 12561262.Google Scholar
Matera, S. & Reuter, K. (2012). When atomic-scale resolution is not enough: spatial effects on in situ model catalyst studies. J Catal 295, 261268.Google Scholar
Merkle, A.P., Gelb, J., Orchowski, A. & Fuchs, J. (2014). X-ray microscopy: the cornerstone for correlative characterization methods in materials research and life science. Microsc Microanal 20, 986987.Google Scholar
Oltman, H.G. (1953). The focusing of short electromagnetic waves by means of the Fresnel half-period zone plate. Phys Rev 92, 10931093.Google Scholar
Rodenburg, J.M. & Faulkner, H.M.L. (2004). A phase retrieval algorithm for shifting illumination. Appl Phys Lett 85, 47954797.Google Scholar
Rodriguez, J.A., Ma, S., Liu, P., Hrbek, J., Evans, J. & Perez, M. (2007). Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 17571760.Google Scholar
Ruhlandt, A., Liese, T., Radisch, V., Krueger, S.P., Osterhoff, M., Giewekemeyer, K., Krebs, H.U. & Salditt, T. (2012). A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing. AIP Adv 2, 012175.Google Scholar
Schroer, C.G., Boye, P., Feldkamp, J.M., Patommel, J., Schropp, A., Samberg, D., Stephan, S., Burghammer, M., Schoder, S., Riekel, C., Lengeler, B., Falkenberg, G., Wellenreuther, G., Kuhlmann, M., Frahm, R., Lutzenkirchen-Hecht, D. & Schroeder, W.H. (2010). Hard X-ray microscopy with elemental, chemical, and structural contrast. Acta Phys Pol, A 117, 357368.Google Scholar
Schropp, A., Boye, P., Goldschmidt, A., Hoenig, S., Hoppe, R., Patommel, J., Rakete, C., Samberg, D., Stephan, S., Schoeder, S., Burghammer, M. & Schroer, C.G. (2011). Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy. J Microsc 241, 912.Google Scholar
Schropp, A., Hoppe, R., Patommel, J., Samberg, D., Seiboth, F., Stephan, S., Wellenreuther, G., Falkenberg, G. & Schroer, C.G. (2012). Hard X-ray scanning microscopy with coherent radiation: beyond the resolution of conventional X-ray microscopes. Appl Phys Lett 100, 253112/14.Google Scholar
Shapiro, D.A., Yu, Y.-S., Tyliszczak, T., Cabana, J., Celestre, R., Chao, W., Kaznatcheev, K., Kilcoyne, A.L.D., Maia, F., Marchesini, S., Meng, Y.S., Warwick, T., Yang, L.L. & Padmore, H.A. (2014). Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat Photonics 8, 765769.Google Scholar
Shi, J., Schaefer, A., Wichmann, A., Murshed, M.M., Gesing, T.M., Wittstock, A. & Bäumer, M. (2014). Nanoporous gold-supported ceria for the water–gas shift reaction: UHV inspired design for applied catalysis. J Phys Chem C 118, 2927029277.Google Scholar
Simonsen, S.B., Agersted, K., Hansen, K.V., Jacobsen, T., Wagner, J.B., Hansen, T.W. & Kuhn, L.T. (2015). Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction. Appl Catal, A 489, 147154.Google Scholar
Simonsen, S.B., Dahl, S., Johnson, E. & Helveg, S. (2008). Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J Catal 255, 15.Google Scholar
Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. (1996). A compound refractive lens for focusing high-energy X-rays. Nature 384, 4951.Google Scholar
Suehiro, S., Miyaji, H. & Hayashi, H. (1991). Refractive lens for X-ray focus. Nature 352, 385386.Google Scholar
Suzuki, Y. & Uchida, F. (1991). X-ray focusing with elliptic Kirkpatrick-Baez mirror system. Jpn J Appl Phys, Part 1 30, 11271130.Google Scholar
Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C. & Pfeiffer, F. (2008). High-resolution scanning X-ray diffraction microscopy. Science 321, 379382.Google Scholar
Thomas, J.M., Ducati, C., Leary, R. & Midgley, P.A. (2013). Some turning points in the chemical electron microscopic study of heterogeneous catalysts. ChemCatChem 5, 25602579.Google Scholar
Thomas, J.M. & Hernandez-Garrido, J.-C. (2009). Probing solid catalysts under operating conditions: electrons or X-rays? Angew Chem, Int Ed 48, 39043907.Google Scholar
Topsoe, H. (2003). Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216, 155164.Google Scholar
Ulvestad, A., Singer, A., Cho, H.-M., Clark, J.N., Harder, R., Maser, J., Meng, Y.S. & Shpyrko, O.G. (2014). Single particle nanomechanics in operando batteries via lensless strain mapping. Nano Lett 14, 51235127.Google Scholar
Vantomme, A., Leonard, A., Yuan, Z.-Y. & Su, B.-L. (2007). Self-formation of hierarchical micro-meso-macroporous structures: generation of the new concept “Hierarchical Catalysis”. Colloids Surf, A 300, 7078.Google Scholar
Vila-Comamala, J., Diaz, A., Guizar-Sicairos, M., Mantion, A., Kewish, C.M., Menzel, A., Bunk, O. & David, C. (2011). Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. Opt Express 19, 2133321344.Google Scholar
Wagner, J.B., Cavalca, F., Damsgaard, C.D., Duchstein, L.D.L. & Hansen, T.W. (2012). Exploring the environmental transmission electron microscope. Micron 43, 11691175.Google Scholar
Wang, J., Xia, R., Zhu, J., Ding, Y., Zhang, X. & Chen, Y. (2012). Effect of thermal coarsening on the thermal conductivity of nanoporous gold. J Mater Sci 47, 50135018.Google Scholar
Weckhuysen, B.M. (2002). Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 2, 97110.Google Scholar
Weckhuysen, B.M. (2004). In-situ spectroscopy of catalysts. Los Angeles: Amer Scientific Pub.Google Scholar
Weckhuysen, B.M. (2009). Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem, Int Ed 48, 49104943.Google Scholar
Wichmann, A., Wittstock, A., Frank, K., Biener, M.M., Neumann, B., Madler, L., Biener, J., Rosenauer, A. & Bäumer, M. (2013a). Maximizing activity and stability by turning gold catalysis upside down: oxide particles on nanoporous gold. ChemCatChem 5, 20372043.Google Scholar
Wichmann, A., Wittstock, A., Frank, K., Biener, M.M., Neumann, B., Maedler, L., Biener, J., Rosenauer, A. & Bäumer, M. (2013b). Maximizing activity and stability by turning gold catalysis upside down: oxide particles on nanoporous gold. ChemCatChem 5, 20372043.Google Scholar
Wittstock, A. & Bäumer, M. (2014). Catalysis by unsupported skeletal gold catalysts. Acc Chem Res 47, 731739.Google Scholar
Wittstock, A., Neumann, B., Schaefer, A., Dumbuya, K., Kuebel, C., Biener, M.M., Zielasek, V., Steinrueck, H.-P., Gottfried, J.M., Biener, J., Hamza, A. & Bäumer, M. (2009). Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113, 55935600.Google Scholar
Wittstock, A., Zielasek, V., Biener, J., Friend, C.M. & Bäumer, M. (2010). Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319322.Google Scholar
Zielasek, V., Juergens, B., Schulz, C., Biener, J., Biener, M.M., Hamza, A.V. & Bäumer, M. (2006). Gold catalysts: nanoporous gold foams. Angew Chem, Int Ed 45, 82418244.Google Scholar
Supplementary material: File

Baier supplementary material

Baier supplementary material 1

Download Baier supplementary material(File)
File 1 MB