Hostname: page-component-797576ffbb-5676f Total loading time: 0 Render date: 2023-12-08T03:09:33.395Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Electron Image Series Reconstruction of Twin Interfaces in InP Superlattice Nanowires

Published online by Cambridge University Press:  08 September 2011

Martin Ek*
nCHREM/Polymer & Materials Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
Magnus T. Borgström
Solid State Physics, Lund University, Box 118, S-221 00, Lund, Sweden
Lisa S. Karlsson
Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH, UK
Crispin J.D. Hetherington
Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH, UK
L. Reine Wallenberg
nCHREM/Polymer & Materials Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
Corresponding author. E-mail:
Get access


The twin interface structure in twinning superlattice InP nanowires with zincblende structure has been investigated using electron exit wavefunction restoration from focal series images recorded on an aberration-corrected transmission electron microscope. By comparing the exit wavefunction phase with simulations from model structures, it was possible to determine the twin structure to be the ortho type with preserved In-P bonding order across the interface. The bending of the thin nanowires away from the intended ⟨110⟩ axis could be estimated locally from the calculated diffraction pattern, and this parameter was successfully taken into account in the simulations.

Materials Applications
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Algra, R.E., Verheijen, M.A., Borgström, M.T., Feiner, L.-F., Immink, G., Van Enckevort, W.J.P., Vlieg, E. & Bakkers, E.P.A.M. (2008). Twinning superlattices in indium phosphide nanowires. Nature 456, 369372.Google Scholar
Bakkers, E.P.A.M., Borgström, M.T. & Verheijen, M.A. (2007). Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull 32, 117122.Google Scholar
Bao, J., Bell, D.C., Capasso, F., Wagner, J.B., Mårtensson, T., Trägårdh, J. & Samuelson, L. (2008). Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett 8, 836841.Google Scholar
Borgström, M.T., Norberg, E., Wickert, P., Nilsson, H.A., Trägårdh, J., Dick, K.A., Statkute, G., Deppert, K., Ramvall, P. & Samuelson, L. (2008). Precursor evaluation for in situ InP nanowire doping. Nanotechnology 19, 445602.Google Scholar
Caroff, P., Dick, K.A., Johansson, J., Deppert, K., Messing, M.E. & Samuelson, L. (2009). Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat Nanotechnol 4, 5055.Google Scholar
Cimpoiasu, E., Stern, E., Klie, R., Munden, R.A., Cheng, G. & Reed, M.A. (2006). The effect of Mg doping on GaN nanowires. Nanotechnology 17, 57355739.Google Scholar
Dubrovskii, V.G. & Sibirev, N.V. (2008). Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys Rev B 77, 035414.Google Scholar
Gutsche, C., Regolin, I., Blekker, K., Lysov, A., Prost, W. & Tegude, F.J. (2009). Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J Appl Phys 105, 024305.Google Scholar
Haraguchi, K., Katsuyama, T., Hiruma, K. & Ogawa, K. (1992). GaAs p-n junction formed in quantum wire crystals. Appl Phys Lett 60, 745747.Google Scholar
Hetherington, C.J.D. (1990). HREM of defects in silicon at twin intersections. Mat Res Soc Symp Proc 183, 123134.Google Scholar
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I. & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.Google Scholar
Jia, C.-L., Lentzen, M. & Urban, K.W. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10, 174184.Google Scholar
Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O. & Samuelson, L. (1999). Size-selected gold nanoparticles by aerosol technology. NanoStruct Mater 12, 4548.Google Scholar
Mattila, M., Hakkarainen, T., Mulot, M. & Lipsanen, H. (2006). Crystal-structure-dependent photoluminescence from InP nanowires. Nanotechnology 17, 15801583.Google Scholar
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E. & Hutchison, J.L. (2000). Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85, 913.Google Scholar
Meyer, R.R., Kirkland, A.I. & Saxton, W.O. (2002). A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89109.Google Scholar
Mikkelsen, A., Ouattara, L., Andersen, J.N., Samuelson, L., Seifert, W. & Lundgren, E. (2004). Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nat Mater 3, 519523.Google Scholar
Mishra, A., Titova, L.V., Hoang, T.B., Jackson, H.E., Smith, L.M., Yarrison-Rice, J.M., Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H. & Jagadish, C. (2007). Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl Phys Lett 91, 263104.Google Scholar
Paiman, S., Gao, Q., Tan, H.H., Jagadish, C., Pemasiri, K., Montazeri, M., Jackson, H.E., Smith, L.M., Yarrison-Rice, J.M., Zhang, X. & Zou, J. (2009). The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Nanotechnology 20, 225606.Google Scholar
Pauzauskie, P. & Yang, P. (2006). Nanowire photonics. Mater Today 9, 3645.Google Scholar
Pemasiri, K., Montazeri, M., Gass, R., Smith, L.M., Jackson, H.E., Yarrison-Rice, J.M., Paiman, S., Gao, Q., Tan, H.H., Jagadish, C., Zhang, X. & Zou, J. (2009). Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures 2009. Nano Lett 9, 648654.Google Scholar
Perea, D.E., Allen, J.E., May, J.S., Wessels, B.W., Seidman, D.N. & Lauhon, L.J. (2006). Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett 6, 181185.Google Scholar
Perea, D.E., Hemesath, E.R., Schwalbach, E.J., Lensch-Falk, J.L., Voorhees, P.W. & Lauhon, L.J. (2009). Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat Nanotechnol 4, 315319.Google Scholar
Stadelmann, P. (2008). Jems electron microscopy software, Java version 3.3425U2008.Google Scholar
Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.-F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J. & Gosele, U. (2006). Nanowire-based one-dimensional electronics. Mater Today 9, 2835.Google Scholar
Tillmann, K., Urban, K.W. & Thust, A. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
van Weert, M.H.M., Wunnicke, O., Roest, A.L., Eijkemans, T.J., Yu Silov, A., Haverkort, J.E.M., 't Hooft, G.W. & Bakkers, E.P.A.M. (2006). Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning. Appl Phys Lett 88, 043109.Google Scholar
Xu, X., Beckman, S.P., Specht, P., Weber, E.R., Chrzan, D.C., Erni, R.P., Arslan, I., Browning, N., Bleloch, A. & Kisielowski, C. (2005). Distortion and segregation in a dislocation core region at atomic resolution. Phys Rev Lett 95, 145501.Google Scholar
Yamashita, T., Sano, K., Akiyama, T., Nakamura, K. & Ito, T. (2008). Theoretical investigations on the formation of wurtzite segments in group III–V semiconductor nanowires. Appl Surf Sci 254, 76687671.Google Scholar
Zemlin, F., Weiss, K., Schiske, P. & Kunath, W. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.Google Scholar