Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T02:51:33.717Z Has data issue: false hasContentIssue false

The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys

Published online by Cambridge University Press:  20 March 2017

Kezhi Ren
Affiliation:
School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China
Xiaohua Tan*
Affiliation:
School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China
Heyun Li
Affiliation:
School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China
Hui Xu
Affiliation:
School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China
Ke Han
Affiliation:
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
*
*Corresponding author. tanxiaohua123@shu.edu.cn
Get access

Abstract

We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

Type
Materials Science (Nonmetals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, W., Gao, R.W., Liu, L.M., Zhu, M.G., Han, G.B., Liu, H.Q. & Li, W. (2004). Effective anisotropy, exchange-coupling length and coercivity in Nd8-xRxFe87.5B4.5 (R=Dy, Sm, x=0–0.6) nanocomposite. Mater Sci Eng B 110, 107110.CrossRefGoogle Scholar
Chen, Z.M., Okumura, H., Hadjipanayis, G.C. & Chen, Q. (2001). Enhancement of magnetic properties of nanocomposite Pr2Fe14B/α-Fe magnets by small substitution of Dy for Pr. J Appl Phys 89, 22992303.CrossRefGoogle Scholar
Coehoorn, R., De Mooij, D.B., Duchateau, J.P.W.B. & Buschow, K.H.J. (1988). Novel permanent magnetic materials made by rapid quenching. J Phys Colloques 49, C8-669C8-670.CrossRefGoogle Scholar
Herbst, J.F. (1991). R2Fe14B materials: Intrinsic properties and technological aspects. Rev Mod Phys 63, 819898.CrossRefGoogle Scholar
Kelly, P.E., O’Grady, K., Mayo, P.L. & Chantrell, R.W. (1989). Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans Magn 25, 38813883.CrossRefGoogle Scholar
Li, W.F., Sepehri-Amin, H., Ohkubo, T., Hase, N. & Hono, K. (2011). Distribution of Dy in high-coercivity (Nd,Dy)-Fe-B sintered magnet. Acta Mater 59, 30613069.CrossRefGoogle Scholar
Liu, J., Sepehri-Amin, H., Ohkubo, T., Hioki, K., Hattori, A., Schrefl, T. & Hono, K. (2013). Effect of Nd content on the microstructure and coercivity of hot-deformed Nd-Fe-B permanent magnets. Acta Mater 61, 53875399.CrossRefGoogle Scholar
Ping, D.H., Hono, K., Kanekiyo, H. & Hirosawa, S. (1999). Microstructural evolution of Fe3B/Nd2Fe14B nanocomposite magnets microalloyed with Cu and Nb. Acta Mater 47, 46414651.CrossRefGoogle Scholar
Ping, D.H., Wu, Y.Q. & Hono, K. (2002). Microstructure and magnetic properties of microalloyed α-Fe/Nd2Fe14B nanocomposites. J Magn Magn Mater 239, 437440.CrossRefGoogle Scholar
Schrefl, T., Fidler, J. & Kronmüller, H. (1994a). Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49, 61006110.CrossRefGoogle ScholarPubMed
Schrefl, T., Fischer, R., Fidler, J. & Kronmüller, H. (1994b). Two- and three-dimensional calculation of remanence enhancement of rare-earth based composite magnets (invited). J Appl Phys 76, 70537058.CrossRefGoogle Scholar
The, N.D., Hoa, N.Q., Oh, S.K., Yu, S.C., Anh, H.D., Vu, L.V. & Chau, N. (2007). Crystalline evolution and large coercivity in Dy-doped (Nd, Dy)2Fe14B/α-Fe nanocomposite magnets. J Phys D Appl Phys 40, 119122.CrossRefGoogle Scholar
Wang, Z.Y., Liu, W.Q., Zhou, B.X., Ni, J.S., Xu, H., Fang, Y.Z. & Jin, M.L. (2009). High coercivity Nd2Fe14B/α-Fe nanocomposite magnets. Physica B 404, 13211325.Google Scholar
Wu, Y.Q., Kramer, M.J., Chen, Z., Ma, B.M. & Miller, M.K. (2004). Behavior of Nb atoms in Nb substituted Nd2Fe14B nanocrystalline alloys investigated by atom probe tomography. IEEE Trans Magn 40, 28862888.CrossRefGoogle Scholar
Xu, H., Zhang, S.Y., Tan, X.H., Hou, X.L., Ni, J.S. & Yue, M. (2008). Effect of Nb on the magnetic properties and microstructure for nanocomposite Nd2Fe14B/α-Fe alloys by three-dimensional atom probe. J Appl Phys 103, 07E117.CrossRefGoogle Scholar
Yamasaki, M., Hamano, M., Mizuguchi, H., Kobayashi, T., Hono, K., Yamamoto, H. & Inoue, A. (2001). Microstructure of hard magnetic bccFe/NdFeB nanocomposite alloys. Scripta Mater 44, 13751378.CrossRefGoogle Scholar