Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T19:40:34.976Z Has data issue: false hasContentIssue false

Dynamics of Carbon Nanotube Tipped Atomic Force Microscopy in Liquid

Published online by Cambridge University Press:  09 May 2013

Moharam Habibnejad Korayem*
Affiliation:
Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Nazila Ebrahimi
Affiliation:
Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
*
*Corresponding author. E-mail: hkorayem@iust.ac.ir
Get access

Abstract

Carbon nanotubes (CNT) are proper tips for atomic force microscopes (AFMs) as a result of their small tip diameter, high aspect ratio, and high flexibility. For nanoscale imaging of soft biological specimens, a CNT tipped AFM is an ideal tool. In this article we review the application of CNTs as AFM tips and present related research about the forces applied from liquids on nanotubes. Then a dynamic mode CNT tipped AFM in liquid is modeled and simulated. The simulation results are compared with experimental results. For modeling and simulation, a continuous beam model and a forward-time simulation method are used. The simulation results show that when a CNT tip vibrates in liquid, the oscillation amplitude and resonance frequency are changed compared to the state of oscillation in air. The small structure of CNTs reduces the hydrodynamic forces, and the liquid environment reduces the adhesive forces between the CNT tip and the sample. These two factors make CNTs a good choice as an AFM tip.

Type
Equipment and Techniques Development: Materials
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asis, E.D., de Li, Y., Ohta, R., Austin, A., Leung, J. & Nguyen, C.V. (2008). Length dependent behavior of a carbon nanotube interacting at liquid-air interface. Appl Phys Lett 93, 023129. Google Scholar
Barber, A.H., Cohen, S.R. & Wagner, H.D. (2004). Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett 92(18), 186103. CrossRefGoogle ScholarPubMed
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press.Google Scholar
Berg, J. & Briggs, G.A.D. (1997). Nonlinear dynamics of intermittent-contact mode atomic force microscopy. Phys Rev B 55(22), 1489914908.CrossRefGoogle Scholar
Bunch, J.S., Rhodin, T. & McEuen, P.L. (2004). Noncontact-AFM imaging of molecular surfaces using single-wall carbonnanotube technology. Nanotechnology 15, S76S78.CrossRefGoogle Scholar
Cavalcanti, A., Hogg, T. & Shirinzadeh, B. (2006). Nanorobotics system simulation in 3D workspaces with low Reynolds number. IEEE MHS 2006 International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, pp. 226231.Google Scholar
Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. & Smalley, R.E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147150.CrossRefGoogle Scholar
Dujardin, E., Ebbesen, T.W., Krishnan, A. & Treacy, M.M.J. (1998). Wetting of single shell carbon nanotubes. Adv Mater 10(17), 14721475.3.0.CO;2-R>CrossRefGoogle Scholar
Garcia, R. & San Paulo, A. (1999). Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60(7), 49614967.CrossRefGoogle Scholar
Gorman, D.J. (1975). Free Vibration Analysis of Beams and Shafts. New York: Wiley.Google Scholar
Hosaka, H., Itao, K. & Kuroda, S. (1995). Damping characteristics of beam-shaped micro-oscillators. Sensor Actuat A-Phys 49, 8795.CrossRefGoogle Scholar
Jarvis, S.P., Uchihashi, T., Ishida, T., Tokumoto, H. & Nakayama, Y. (2000). Local solvation shell measurement in water using a carbon nanotube probe. J Phys Chem 104(26), 60916094.CrossRefGoogle Scholar
Kageshima, M., Jensenius, H., Dienwiebel, M., Nakayama, Y., Tokumoto, H., Jarvis, S.P. & Oosterkamp, T.H. (2002). Noncontact atomic force microscopy in liquid environment With quartz tuning fork and carbon nanotube probe. Appl Surf Sci 188, 440444.CrossRefGoogle Scholar
Korayem, M.H. & Ebrahimi, N. (2011). Nonlinear dynamics of tapping-mode atomic force microscopy in liquid. J Appl Phys 109, 084301. CrossRefGoogle Scholar
Korayem, M.H., Kavousi, A. & Ebrahimi, N. (2011). Dynamic analysis of tapping-mode AFM considering capillary force interactions. Scientia Iranica 18(1), 121129.CrossRefGoogle Scholar
Lamb, H. (1945). Hydrodynamics, 6th ed. New York: Dover Publications.Google Scholar
Lee, S.I., Howell, S.W., Raman, A. & Reifenberger, R. (2002). Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Phys Rev B 66, 115409. Google Scholar
Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R., Nguyen, C.V. & Meyyappan, M. (2004). Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers. Nanotechnology 15, 416421.CrossRefGoogle Scholar
Mattia, D. & Gogotsi, Y. (2008). Review: Static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5, 289305.CrossRefGoogle Scholar
Moloni, K., Buss, M.R. & Andres, R.P. (1999). Tapping mode scanning force microscopy in water using a carbon nanotube probe. Ultramicroscopy 80, 237246.CrossRefGoogle Scholar
Rankl, Ch., Pastushenko, V., Kienberger, F., Stroh, C.M. & Hinterdorfer, P. (2004). Hydrodynamic damping of a magnetically oscillated cantilever close to a surface. Ultramicroscopy 100, 301308.CrossRefGoogle ScholarPubMed
Sokhan, V.P., Nicholson, D. & Quirke, N. (2002). Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. J Chem Phys 117(18), 85318539.CrossRefGoogle Scholar
Tang, W. & Advani, S.G. (2006). Drag on a nanotube in uniform liquid argon flow. J Chem Phys 125, 174706. CrossRefGoogle ScholarPubMed
Walther, J.H., Jaffe, R., Halicioglu, T. & Koumoutsakos, P. (2001). Carbon nanotubes in water: Structural characteristics and energetics. J Phys Chem B 105, 99809987.CrossRefGoogle Scholar
Walther, J.H., Jaffe, R.L., Kotsalis, E.M., Werder, T., Halicioglu, T. & Koumoutsakos, P. (2004a). Hydrophobic hydration of C60 and carbon nanotubes in water. Carbon 42, 11851194.CrossRefGoogle Scholar
Walther, J.H., Werder, T., Jaffe, R.L. & Koumoutsakos, P. (2004b). Hydrodynamic properties of carbon nanotubes. Phys Rev E 69, 062201. CrossRefGoogle ScholarPubMed
Wang, C.Y., Li, C.F. & Adhikari, S. (2010). Axisymmetric vibration of single-walled carbon nanotubes in water. Phys Lett A 374(24), 24672474.CrossRefGoogle Scholar
Zisman, W.A. (1963). Contact Angle, Wettability, and Adhesion. Advances in Chemistry Series 43. Washington, DC: American Chemical Society.Google Scholar