Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-mgm4h Total loading time: 0.289 Render date: 2021-06-23T03:32:14.247Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Correlative Atom Probe Tomography and Transmission Electron Microscopy Analysis of Grain Boundaries in Thermally Grown Alumina Scale

Published online by Cambridge University Press:  04 February 2019

Ivan Povstugar
Affiliation:
Central Institute for Engineering, Electronics and Analytics (ZEA-3) –– Analytics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Juliane Weber
Affiliation:
Institute of Energy and Climate Research (IEK-6) –– Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany Chemical Science Division, Oak Ridge National Laboratory, 37831 Oak Ridge, TN, USA
Dmitry Naumenko
Affiliation:
Institute of Energy and Climate Research (IEK-2) –– Microstructure and Properties of Materials, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Taihong Huang
Affiliation:
Institute of Energy and Climate Research (IEK-2) –– Microstructure and Properties of Materials, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093 Kunming, China
Martina Klinkenberg
Affiliation:
Institute of Energy and Climate Research (IEK-6) –– Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Willem J. Quadakkers
Affiliation:
Institute of Energy and Climate Research (IEK-2) –– Microstructure and Properties of Materials, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Corresponding
E-mail address:

Abstract

We employed correlative atom probe tomography (APT) and transmission electron microscopy (TEM) to analyze the alumina scale thermally grown on the oxide dispersion-strengthened alloy MA956. Segregation of Ti and Y and associated variation in metal/oxygen stoichiometry at the grain boundaries and triple junctions of alumina were quantified and discussed with respect to the oxidation behavior of the alloy, in particular, to the formation of cation vacancies. Correlative TEM analysis was helpful to avoid building pragmatically well-looking but substantially incorrect APT reconstructions, which can result in erroneous quantification of segregating species, and highlights the need to consider ionic volumes and detection efficiency in the reconstruction routine. We also demonstrate a cost-efficient, robust, and easy-handling setup for correlative analysis based solely on commercially available components, which can be used with all conventional TEM tools without the need to modify the specimen holder assembly.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aguiar, JA, Stokes, A, Jiang, C-S, Aoki, T, Kotula, PG, Patel, MK, Gorman, B & Al-Jassim, M (2016). Revealing surface modifications of potassium-fluoride-treated Cu(In,Ga)Se2: A study of material structure, chemistry, and photovoltaic performance. Adv Mater Interfaces 3, 1600013.CrossRefGoogle Scholar
Arslan, I, Marquis, EA, Homer, M, Hekmaty, MA & Bartelt, NC (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.CrossRefGoogle ScholarPubMed
Baik, S-I, Yin, X & Seidman, DN (2013). Correlative atom-probe tomography and transmission electron microscope study of a chemical transition in a spinel on an oxidized nickel-based superalloy. Scr Mater 68, 909912.CrossRefGoogle Scholar
Bale, CW, Bélisle, E, Chartrand, P, Decterov, SA, Eriksson, G, Gheribi, AE, Hack, K, Jung, I-H, Kang, Y-B, Melançon, J, Pelton, AD, Petersen, S, Robelin, C, Sangster, J, Spencer, P & Van Ende, M-A (2016). Factsage thermochemical software and databases, 2010–2016. Calphad 54, 3553.CrossRefGoogle Scholar
Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87–88, 298304.CrossRefGoogle Scholar
Birks, N, Meier, GH & Pettit, FS (2006). Introduction to the High-Temperature Oxidation of Metals. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Boll, T, Unocic, KA, Pint, BA & Stiller, K (2017). Interfaces in oxides formed on NiAlCr doped with Y, Hf, Ti, and B. Microsc Microanal 23, 396403.CrossRefGoogle Scholar
Chen, Y, Reed, RC & Marquis, EA (2014). Interfacial solute segregation in the thermally grown oxide of thermal barrier coating structures. Oxid Met 82, 457467.CrossRefGoogle Scholar
Chen, Y, Rice, KP, Prosa, TJ, Marquis, EA & Reed, RC (2015). Integrated APT/t-EBSD for grain boundary analysis of thermally grown oxide on a Ni-based superalloy. Microsc Microanal 21, 687688.CrossRefGoogle Scholar
Chen, YM, Ohkubo, T, Kodzuka, M, Morita, K & Hono, K (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61, 693696.CrossRefGoogle Scholar
Clemens, D, Bongartz, K, Speier, W, Hussey, RJ & Quadakkers, WJ (1993). Analysis and modelling of transport processes in alumina scales on high temperature alloys. Fresenius J Anal Chem 346, 318322.CrossRefGoogle Scholar
Cojocaru-Mirédin, O, Schwarz, T & Abou-Ras, D (2018). Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography. Scr Mater 148, 106114.CrossRefGoogle Scholar
Devaraj, A, Colby, R, Hess, WP, Perea, DE & Thevuthasan, S (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by Laser-assisted atom probe tomography. J Phys Chem Lett 4, 993998.CrossRefGoogle ScholarPubMed
Diercks, DR, Gorman, BP, Manerbino, A & Coors, G (2014). Atom probe tomography of yttrium-doped barium-cerium-zirconium oxide with NiO addition Salvador, P. (Ed.). J Am Ceram Soc 97, 33013306.CrossRefGoogle Scholar
Diercks, DR, Tong, J, Zhu, H, Kee, R, Baure, G, Nino, JC, O'Hayre, R & Gorman, BP (2016). Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria. J Mater Chem A 4, 51675175.CrossRefGoogle Scholar
Felfer, P & Cairney, J (2011). New equipment for correlative FIB/TEM/atom probe and site-specific preparation using STEM live imaging. Microsc Microanal 17, 756757.CrossRefGoogle Scholar
Gault, B, de Geuser, F, Stephenson, LT, Moody, MP, Muddle, BC & Ringer, SP (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.CrossRefGoogle Scholar
Gault, B, Loi, ST, Araullo-Peters, VJ, Stephenson, LT, Moody, MP, Shrestha, SL, Marceau, RKW, Yao, L, Cairney, JM & Ringer, SP (2011). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111, 16191624.CrossRefGoogle ScholarPubMed
Gorman, BP, Diercks, DR, Salmon, D, Stach, E, Amador, G & Hartfield, C (2008a). Hardware and techniques for cross-correlative TEM and atom probe analysis. Micros Today 16, 4247.CrossRefGoogle Scholar
Gorman, BP, Puthucode, A, Diercks, DR & Kaufman, MJ (2008b). Cross-correlative TEM and atom probe analysis of partial crystallisation in NiNbSn metallic glasses. Mater Sci Technol 24, 682688.CrossRefGoogle Scholar
Gülgün, MA, Voytovych, R, Maclaren, I, Rühle, M & Cannon, RM (2002). Cation segregation in an oxide ceramic with low solubility: Yttrium doped α-alumina. Interface Sci 10, 99110.CrossRefGoogle Scholar
Hellman, OC & Seidman, DN (2002). Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy. Mater Sci Eng A 327, 2428.CrossRefGoogle Scholar
Herbig, M, Choi, P & Raabe, D (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 3239.CrossRefGoogle ScholarPubMed
Herbig, M, Raabe, D, Li, YJ, Choi, P, Zaefferer, S & Goto, S (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.CrossRefGoogle ScholarPubMed
Huang, T, Naumenko, D, Song, P, Lu, J & Quadakkers, WJ (2018). Effect of Titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy. Oxid Met 90, 671690.CrossRefGoogle Scholar
Huczkowski, P, Gopalakrishnan, SG, Nowak, W, Hattendorf, H, Iskandar, R, Mayer, J & Quadakkers, WJ (2016). Effect of Zr content on the morphology and emissivity of surface oxide scales on FeCrAlY alloys. Adv Eng Mater 18, 711720.CrossRefGoogle Scholar
Karahka, M, Xia, Y & Kreuzer, HJ (2015). The mystery of missing species in atom probe tomography of composite materials. Appl Phys Lett 107, 062105.CrossRefGoogle Scholar
Kim, J-H, Kim, BK, Kim, D-I, Choi, P-P, Raabe, D & Yi, K-W (2015). The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700°C for advanced thermal power plant applications. Corros Sci 96, 5266.CrossRefGoogle Scholar
Kirchhofer, R, Diercks, DR & Gorman, BP (2015). Near atomic scale quantification of a diffusive phase transformation in (Zn, Mg)O/Al2O3 using dynamic atom probe tomography. J Mater Res 30, 11371147.10.1557/jmr.2015.86CrossRefGoogle Scholar
Kontis, P, Pedrazzini, S, Gong, Y, Bagot, PAJ, Moody, MP & Reed, RC (2017). The effect of boron on oxide scale formation in a new polycrystalline superalloy. Scr Mater 127, 156159.CrossRefGoogle Scholar
La Fontaine, A, Yen, H-W, Felfer, PJ, Ringer, SP & Cairney, JM (2015). Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scr Mater 99, 14.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York, US: Springer New York.CrossRefGoogle Scholar
Loi, ST, Gault, B, Ringer, SP, Larson, DJ & Geiser, BP (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.CrossRefGoogle ScholarPubMed
London, AJ, Lozano-Perez, S, Moody, MP, Amirthapandian, S, Panigrahi, BK, Sundar, CS & Grovenor, CRM (2015). Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys. Ultramicroscopy 159, 360367.CrossRefGoogle ScholarPubMed
Marquis, EA, Yahya, NA, Larson, DJ, Miller, MK & Todd, RI (2010). Probing the improbable: imaging C atoms in alumina. Mater Today 13, 3436.CrossRefGoogle Scholar
Maugis, P & Hoummada, K (2016). A methodology for the measurement of the interfacial excess of solute at a grain boundary. Scr Mater 120, 9093.CrossRefGoogle Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
N'Dah, E, Galerie, A, Wouters, Y, Goossens, D, Naumenko, D, Kochubey, V & Quadakkers, WJ (2005). Metastable alumina formation during oxidation of FeCrAl and its suppression by surface treatments. Mater Corros 56, 843847.CrossRefGoogle Scholar
Naumenko, D, Gleeson, B, Wessel, E, Singheiser, L & Quadakkers, WJ (2007). Correlation between the microstructure, growth mechanism, and growth kinetics of alumina scales on a FeCrAlY alloy. Metall Mater Trans A 38, 29742983.CrossRefGoogle Scholar
Nguyen, TD, La Fontaine, A, Yang, L, Cairney, JM, Zhang, J & Young, DJ (2018). Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO 2 gas. Corros Sci 132, 125135.CrossRefGoogle Scholar
Nychka, JA & Clarke, DR (2005). Quantification of aluminum outward diffusion during oxidation of FeCrAl alloys. Oxid Met 63, 325352.CrossRefGoogle Scholar
Pedrazzini, S, Child, DJ, West, G, Doak, SS, Hardy, MC, Moody, MP & Bagot, PAJ (2016). Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy. Scr Mater 113, 5154.CrossRefGoogle Scholar
Perea, DE, Arslan, I, Liu, J, Ristanović, Z, Kovarik, L, Arey, BW, Lercher, JA, Bare, SR & Weckhuysen, BM (2015). Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat Commun 6, 7589.CrossRefGoogle ScholarPubMed
Pint, BA (1996). Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met 45, 137.CrossRefGoogle Scholar
Pint, BA (1997). On the formation of interfacial and internal voids in α-Al2O3 scales. Oxid Met 48, 303328.CrossRefGoogle Scholar
Pint, BA (2003). Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. J Am Ceram Soc 86, 686695.CrossRefGoogle Scholar
Pint, BA, Garratt-Reed, AJ & Hobbs, LW (1995). The reactive element effect in commercial ODS FeCrAl alloys. Mater High Temp 13, 316.CrossRefGoogle Scholar
Quadakkers, WJ, Elschner, A, Holzbrecher, H, Schmidt, K, Speier, W & Nickel, H (1992). Analysis of composition and growth mechanisms of oxide scales on high temperature alloys by SNMS, SIMS, and RBS. Mikrochim Acta 107, 197206.CrossRefGoogle Scholar
Quadakkers, WJ, Holzbrecher, H, Briefs, KG & Beske, H (1989). Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys. Oxid Met 32, 6788.CrossRefGoogle Scholar
Schreiber, DK, Olszta, MJ & Bruemmer, SM (2013). Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water. Scr Mater 69, 509512.CrossRefGoogle Scholar
Stiller, K, Viskari, L, Sundell, G, Liu, F, Thuvander, M, Andrén, H-O, Larson, DJ, Prosa, T & Reinhard, D (2013). Atom probe tomography of oxide scales. Oxid Met 79, 227238.CrossRefGoogle Scholar
Sundell, G, Thuvander, M & Andrén, H-O (2012). Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corros Sci 65, 1012.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Toji, Y, Matsuda, H, Herbig, M, Choi, P-P & Raabe, D (2014). Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater 65, 215228.CrossRefGoogle Scholar
Unocic, KA, Chen, Y, Shin, D, Pint, BA & Marquis, EA (2018). STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy. Micron 109, 4152.CrossRefGoogle ScholarPubMed
Unocic, KA, Essuman, E, Dryepondt, S & Pint, BA (2012). Effect of environment on the scale formed on oxide dispersion strengthened FeCrAl at 1050°C and 1100°C. Mater High Temp 29, 171180.CrossRefGoogle Scholar
Yang, JC, Nadarzinski, K, Schumann, E & Rühle, M (1995). Electron microscopy studies of NiAl/γ-Al2O3 interfaces. Scr Metall Mater 33, 10431048.CrossRefGoogle Scholar
Young, DJ (2016). High Temperature Oxidation and Corrosion of Metals. Amsterdam, Netherlands: Elsevier.Google Scholar
Young, DJ, Naumenko, D, Niewolak, L, Wessel, E, Singheiser, L & Quadakkers, WJ (2010). Oxidation kinetics of Y-doped FeCrAl-alloys in low and high pO2 gases. Mater Corros 61, 838844.CrossRefGoogle Scholar
Zanuttini, D, Blum, I, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, P-M & Gervais, B (2017). Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel. Phys Rev A 95, 061401.CrossRefGoogle Scholar
Zhou, X, Yu, X, Kaub, T, Martens, RL & Thompson, GB (2016). Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci Rep 6, 34642.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Correlative Atom Probe Tomography and Transmission Electron Microscopy Analysis of Grain Boundaries in Thermally Grown Alumina Scale
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Correlative Atom Probe Tomography and Transmission Electron Microscopy Analysis of Grain Boundaries in Thermally Grown Alumina Scale
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Correlative Atom Probe Tomography and Transmission Electron Microscopy Analysis of Grain Boundaries in Thermally Grown Alumina Scale
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *