Skip to main content Accessibility help
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.235 Render date: 2021-09-19T00:18:20.614Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Calcium Deposits in the Crayfish, Cherax quadricarinatus: Microstructure Versus Elemental Distribution

Published online by Cambridge University Press:  28 January 2016

Gilles Luquet*
Sorbonne Universités, Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), UMR MNHN/CNRS-7208/UPMC/UCN/UA/IRD-207, Muséum National d’Histoire Naturelle, 75005 Paris, France
Yannicke Dauphin
Sorbonne Universités, Département Systèmatique et Evolution, Mammifères et Oiseaux, Muséum National d’Histoire Naturelle, 75005 Paris, France
Aline Percot
Sorbonne Universités, MONARIS, UMR 8233 CNRS/UPMC, Université Paris 06, 75005 Paris, France
Murielle Salomé
ID21, European Synchrotron Radiation Facility, 38000 Grenoble, France
Andreas Ziegler
Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany
Maria S. Fernández
Faculty of Veterinary and Animal Sciences, University of Chile, Santiago de Chile, Chile
José L. Arias
Faculty of Veterinary and Animal Sciences, University of Chile, Santiago de Chile, Chile


The crayfish Cherax quadricarinatus stores calcium ions, easily mobilizable after molting, for calcifying parts of the new exoskeleton. They are chiefly stored as amorphous calcium carbonate (ACC) during each premolt in a pair of gastroliths synthesized in the stomach wall. How calcium carbonate is stabilized in the amorphous state in such a biocomposite remains speculative. The knowledge of the microstructure at the nanometer level obtained by field emission scanning electron microscopy and atomic force microscopy combined with scanning electron microscopy energy-dispersive X-ray spectroscopy, micro-Raman and X-ray absorption near edge structure spectroscopy gave relevant information on the elaboration of such an ACC-stabilized biomineral. We observed nanogranules distributed along chitin-protein fibers and the aggregation of granules in thin layers. AFM confirmed the nanolevel structure, showing granules probably surrounded by an organic layer and also revealing a second level of aggregation as described for other crystalline biominerals. Raman analyses showed the presence of ACC, amorphous calcium phosphate, and calcite. Elemental analyses confirmed the presence of elements like Fe, Na, Mg, P, and S. P and S are heterogeneously distributed. P is present in both the mineral and organic phases of gastroliths. S seems present as sulfate (probably as sulfated sugars), sulfonate, sulfite, and sulfoxide groups and, in a lesser extent, as sulfur-containing amino acids.

Biological Applications
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Addadi, L., Moradian, J., Shay, E., Maroudas, M.G. & Weiner, S. (1987). A chemical model for the cooperation of sulfates and carboxylates in calref crystal nucleation: Relevance to biomineralization. Proc Natl Acad Sci USA 84, 27322736.CrossRefGoogle ScholarPubMed
Addadi, L., Raz, S. & Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its role in biomineralization. Adv Mater 15, 959970.CrossRefGoogle Scholar
Aizenberg, J., Lambert, G., Weiner, S. & Addadi, L. (2001). Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J Am Chem Soc 124, 3239.CrossRefGoogle Scholar
Akiva-Tal, A., Kabaya, S., Balazs, Y.S., Glazer, L., Berman, A., Sagi, A. & Schmidt, A. (2011). In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths. Proc Natl Acad Sci USA 108, 1476314768.CrossRefGoogle ScholarPubMed
Albeck, S., Addadi, L. & Weiner, S. (1996). Regulation of calref crystal morphology by intracrystalline acidic proteins and glycoproteins. Connect Tissue Res 35, 365370.CrossRefGoogle ScholarPubMed
Becker, A., Ziegler, A. & Eppple, M. (2005). The mineral phase in the cuticles of two species of Crustacea consists of magnesium calref, amorphous calcium carbonate, and amorphous calcium phosphate. Dalton Trans, 18141820.CrossRefGoogle ScholarPubMed
Bentov, S., Weil, S., Glazer, L., Sagi, A. & Berman, A. (2010). Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J Struct Biol 17, 207215.CrossRefGoogle Scholar
Bentov, S., Zaslansky, P., Al-Sawalmih, A., Masic, A., Fratzl, P., Sagi, A., Berman, A. & Aichmayer, B. (2012). Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3, 839845.CrossRefGoogle Scholar
Bliss, D.E. (1953). Endocrine control of metabolism in the land crab, Gecarcinus lateralis (Freminville). I. Differences in the respiratory metabolism of sinusglandless and eyestalkless crabs. Biol Bull 104, 275296.CrossRefGoogle Scholar
Busenberg, E. & Plummer, L.N. (1985). Kinetic and thermodynamic factors controlling the distribution of SO42- and Na+ in calrefs and selected aragonites. Geochim Cosmochim Acta 49, 713725.CrossRefGoogle Scholar
Chaisemartin, C. (1964). Importance des gastrolithes dans l’économie du calcium chez Astacus pallipes (Lereboullet). Bilan calcique de l’exuviation. Vie Milieu 15, 457474.Google Scholar
Chantran, M.S. (1874). Observations sur la formation des pierres chez les écrevisses. C R Acad Sci Paris 78, 65556557.Google Scholar
Combes, C. & REY, C. (2010). Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater 6, 33623378.CrossRefGoogle ScholarPubMed
Cuif, J.P. & Dauphin, Y. (2005). The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150, 319331.CrossRefGoogle ScholarPubMed
Cuif, J.P., Dauphin, Y., Doucet, J., Salome, M. & Susini, J. (2003). XANES mapping of organic sulfate in three scleractinan coral skeletons. Geochim Cosmochim Acta 67, 7583.CrossRefGoogle Scholar
Cuif, J.-P., Dauphin, Y., Farre, B., Nehrke, G. & Nouet, J. (2008). Distribution of sulfated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineral Mag 72, 233237.CrossRefGoogle Scholar
Cuif, J.-P., Dauphin, Y., Farre, B., Nehrke, G., Nouet, J. & Perez-Huerta, A. (2012). Layered growth and crystallization in calcareous biominerals: Impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies. Minerals 2, 1139.CrossRefGoogle Scholar
Cusack, M., Dauphin, Y., Cuif, J.P., Salome, M., Freer, A. & Yin, H. (2008). Micro-XANES mapping of sulfur and its association with magnesium and phosphorus in the shell of the brachiopod, Terebratulina retusa. Chem Geol 253, 172179.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salome, M., Susini, J. & Williams, T. (2003). In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J Struct Biol 142, 272280.CrossRefGoogle ScholarPubMed
Dauphin, Y., Cuif, J.P., Salome, M. & Susini, J. (2005). Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the SK-edge. Am Mineral 90, 17481758.CrossRefGoogle Scholar
Dauphin, Y., Cuif, J.P., Salome, M., Susini, J. & Williams, T. (2006). Microstructure and chemical composition of giant avian eggshells. Anal Bioanal Chem 386, 17611771.CrossRefGoogle ScholarPubMed
Dauphin, Y., Cuif, J.P. & Williams, T. (2008). Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa). Comp Biochem Physiol B 150, 1022.CrossRefGoogle Scholar
Dauphin, Y. & Dufour, E. (2008). Nanostructures of the aragonitic otolith of cod (Gadus morhua). Micron 39, 891896.CrossRefGoogle Scholar
Dillaman, R., Hequembourg, S. & Gay, M. (2005). Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J Morphol 263, 356374.CrossRefGoogle ScholarPubMed
Fabritius, H.-O., Balasundaram, E.S., Hild, S., Huemer, K. & Raabe, D. (2012). Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. Z Kristallog Kristallgeom Kristallphysic Kristallchem 227, 766776.Google Scholar
Farmer, A.S. (1973). Age and growth in Nephrops norvegicus (Decapoda: Nephropoidae). Mar Biol 23, 315325.CrossRefGoogle Scholar
Fernandez, M.S., Bustos, C., Luquet, G., Saez, D., Neira-Carrillo, A., Corneillat, M., Alcaraz, G. & Arias, J.L. (2012). Proteoglycan occurrence in gastrolith of the crayfish Cherax quadricarinatus (Crustacea, Malacostraca, Decapoda). J Crust Biol 32, 802815.CrossRefGoogle Scholar
Glazer, L. & Sagi, A. (2012). On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix. Invert Rep Dev 56, 5765.CrossRefGoogle Scholar
Glazer, L., Shechter, A., Tom, M., Yudkovski, Y., Well, S., Aflalo, E.D., Pamuru, R.R., Khalaila, I., Bentov, S., Berman, A. & Sagi, A. (2010). A protein involved in the assembly of an extracellular calcium storage matrix. J Biol Chem 285, 1283112839.CrossRefGoogle ScholarPubMed
Glazer, L., Tom, M., Weil, S., Roth, Z., Khalaila, I., Mittelman, B. & Sagi, A. (2013). Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. J Exp Biol 216, 18981904.Google ScholarPubMed
Graf, F. (1978). Les sources de calcium pour les crustacés venant de muer. Arch Zool Exp Gen 119, 143161.Google Scholar
Greenaway, P. (1985). Calcium balance and molting in the Crustacea. Biol Rev 60, 425454.CrossRefGoogle Scholar
Grunenfelder, L.K., Herrera, S. & Kisalius, D. (2014). Crustacean-derived biomimetic components and nanostructured composites. Small 16, 3020730232.Google Scholar
Habraken, W.J.E.M., Masic, A., Bertinetti, L., Al-Sawalmih, A., Glazer, L., Bentov, S., Fratzl, P., Sagi, A., Aichmayer, B. & Berman, A. (2015). Layered growth of crayfish gastrolith: About the stability of amorphous calcium carbonate and role of additives. J Struct Biol 189, 2836.CrossRefGoogle ScholarPubMed
Han, T.Y.-J. & Aizenberg, J. (2008). Calcium carbonate storage in amorphous form and its template-induced crystallization. Chem Mater 20, 10641068.CrossRefGoogle Scholar
Haugstad, G. (2012). Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications. Hoboken, NJ, USA: John Wiley & Sons.CrossRefGoogle Scholar
Hennig, S., Hild, S., Fabritius, H.-O., Soor, C. & Ziegler, A. (2012). Influence of near-physiological salines and organic matrix proteins from amorphous CaCO3 deposits of Porcellio scaber on in vitro CaCO3 precipitation. Cryst Growth Des 12, 646655.CrossRefGoogle Scholar
Herrick, F.H. (1911). Natural History of the American Lobster. Cambridge: U.S. Government Printing Office, Harvard University Press.CrossRefGoogle Scholar
Hikida, T., Nagasawa, H. & Kogure, T. (2003). Characterization of amorphous calcium carbonate in the gastrolith of crayfish, Procambarus clarkii. In Biomineralization: Formation, Diversity, Evolution and Application, Kobayashi, I. & Ozawa, H. (Eds.), pp. 8184. Kanagawa: Tokai University Press.Google Scholar
Huxley, T.H. (1879). The Crayfish: An Introduction to the Study of Zoology. The International Scientific Series, vol. XXVIII. London, UK: C. Kegan Paul & Company, Oxford University Press.Google Scholar
Ishii, K., Yanagisawa, T. & Nagasawa, H. (1996). Characterization of a matrix protein in the gastroliths of the crayfish Procambarus clarkii. Biosci Biotechnol Biochem 60, 14791482.CrossRefGoogle ScholarPubMed
Khan, A.F., Awais, M., Khan, S.A, Tabassum, S., Chaudhry, A.A. & Rehman, I.U. (2013). Raman spectroscopy of natural bone and synthetic apatites. Appl Spectrosc Rev 48, 329355.CrossRefGoogle Scholar
Kontrec, J., Kralj, D., Brecevic, L., Falini, G., Fermani, S., Noethig-Laslo, V. & Mirosavljevic, K. (2004). Incorporation of inorganic anions in calref. Eur J Inorg Chem 2004, 45794595.CrossRefGoogle Scholar
Kugler, O.E. & Birkner, M.L. (1948). Histochemical observations of alkaline phosphatase in the integument, gastrolith sac, digestive gland and nephridium of the crayfish. Physiol Zool 21, 105110.CrossRefGoogle ScholarPubMed
Kunkel, J.G. & Jercinovic, M.J. (2013). Carbonate apatite formulation in cuticle structure adds resistance to microbial attack for American lobster. Mar Biol Res 9, 2734.CrossRefGoogle Scholar
Loste, A., Wilson, R.M., Seshadric, R. & Meldrum, F.C. (2003). The role of magnesium in stabilising amorphous calcium carbonate and controlling calref morphologies. J Cryst Growth 254, 206208.CrossRefGoogle Scholar
Lowenstam, H.A. & Weiner, S. (1989). On Biomineralization. London, UK: Oxford University Press.CrossRefGoogle Scholar
Luquet, G. (2012). Biomineralizations: Insights and prospects from crustaceans. Zookeys 176, 103121.CrossRefGoogle Scholar
Luquet, G., Fernandez, M.S., Badou, A., Guichard, N., Le Roy, N., Corneillat, M., Alcaraz, G. & Arias, J.L. (2013). Comparative ultrastructure and carbohydrate composition of gastroliths from Astacidae, Cambaridae and Parastacidae freshwater crayfish (Crustacea, Decapoda). Biomolecules 3, 1838.CrossRefGoogle Scholar
Luquet, G., Le Roy, N., Zanella-Cléon, I., Becchi, M., Bucarey, S., Fernandez, M.S., Arias, J.L., Guichard, N., Marie, B. & Marin, F. (2009). Characterization of crustacyanin-A2 subunit as a component of the organic matrix of gastroliths from the crayfish Cherax quadricarinatus. Mater Res Soc Symp Proc 1187, 6975.CrossRefGoogle Scholar
Luquet, G. & Marin, F. (2004). Biomineralizations in crustaceans: Storage strategies. C R Palevol 3, 515534.CrossRefGoogle Scholar
Mann, S. (1983). Mineralization in biological systems. Struct Bond 54, 125174.CrossRefGoogle Scholar
Mittal, V. & Matsko, N.B. (2012). Analytical Imaging Techniques for Soft Matter Characterization. New York, NY, USA: Springer Science & Business Media.CrossRefGoogle Scholar
Neues, F., Ziegler, A. & Epple, M. (2007). The composition of the mineralized cuticle in marine and terrestrial isopods: A comparative study. Cryst Eng Comm 9, 12451251.CrossRefGoogle Scholar
Numanoi, H. (1939). Behavior of blood calcium in the formation of gastroliths in some decapod crustaceans. Jap J Zool 8, 357363.Google Scholar
Pickering, I.J., Prince, R.C., Divers, T. & George, G.N. (1998). Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett 441, 1114.CrossRefGoogle ScholarPubMed
Politi, Y., Metzler, R.A., Abrecht, M., Gilbert, B., Wilt, F.H., Sagi, I., Addadi, L., Weiner, S. & Gilbert, P.U. (2008). Transformation mechanism of amorphous calcium carbonate into calref in the sea urchin larval spicule. Proc Natl Acad Sci USA 105, 1736217366.CrossRefGoogle ScholarPubMed
Prietzel, J., Thieme, J., Salome, M. & Knicker, H. (2007). Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid and particle size separates. Soil Biol Biochem 39, 877890.CrossRefGoogle Scholar
Ravel, B. & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12, 537541.CrossRefGoogle ScholarPubMed
Raz, S., Hamilton, P., Wilt, F., Weiner, S. & Addadi, L. (2003). The transient phase of amorphous calcium carbonate in sea urchin spicules: The involvement of proteins and magnesium ions in their formation and stabilization. Adv Funct Mater 13, 480486.CrossRefGoogle Scholar
Raz, S., Testeniere, O., Hecker, A., Weiner, S. & Luquet, G. (2002). Stable amorphous calcium carbonate is the main components of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203, 269274.CrossRefGoogle Scholar
Reeder, R.J., Tang, Y., Schmidt, D.T., Kubista, L.M., Cowan, D.F. & Philips, B.L. (2013). Characterization of structure in biogenic amorphous calcium carbonate: Pair distribution function and nuclear magnetic resonance studies of lobster gastrolith. Cryst Growth Des 13, 19051914.CrossRefGoogle Scholar
Robertson, J.D. (1937). Some features of calcium metabolism of the shore crab (Carcinus maenas Pennant). Proc Roy Soc London B 124, 162182.Google Scholar
Romano, P., Fabritius, H. & Raabe, D. (2007). The exoskeleton of the lobster, Homarus americanus, as an example of a smart anisotropic biological material. Acta Biomater 3, 301309.CrossRefGoogle Scholar
Rousseau, M., Meibom, A., Geze, M., Bourrat, X., Angellier, M. & Lopez, E. (2009). Dynamics of sheet nacre formation in bivalves. J Struct Biol 165, 190195.CrossRefGoogle ScholarPubMed
Ryhänen, R. (1962). Beobachtungrn über Häutungsvorgang und Ca-Haushalt beim Edelkrebs Astacus astacus. Arch Soc Vanamo 17, 2538.Google Scholar
Sarda, F. (1991). Reproduction and moult synchronism in Nephrops norvegicus (L.) (Decapoda, Nephropidae) in the western mediterranean is spawning annual or biennial? Crustaceana 60, 186199.CrossRefGoogle Scholar
Sato, A., Nagasaka, S., Fuhirata, K., Nagata, S., Arai, S., Saruwatari, K., Kogure, T., Sakuda, S. & Nagasawa, H. (2011). Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans. Nat Chem Biol 7, 197199.CrossRefGoogle ScholarPubMed
Sauer, G.R., Zunic, W.B., Durig, J.R. & Wuthier, R.E. (1994). Fourier transform Raman spectroscopy of synthetic and biogenic calcium phosphates. Calcif Tissue Int 54, 414420.CrossRefGoogle Scholar
Shechter, A., Berman, A., Singer, A., Freiman, A., Grinstein, M., Erez, J., Aflalo, E.D. & Sagi, A. (2008a). Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. Biol Bull 214, 122134.CrossRefGoogle ScholarPubMed
Shechter, A., Glazer, L., Cheled, S., Mor, E., Weil, S., Berman, A., Bentov, S., Aflalo, E.D., Khalaila, I. & Sagi, A. (2008b). A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proc Natl Acad Sci USA 105, 71297134.CrossRefGoogle ScholarPubMed
Soejoko, D.S. & Tjia, M.O. (2003). Infrared spectroscopy and X ray diffraction study on the morphological variations of carbonate and phosphate compounds in giant prawn (Macrobrachium rosenbergii) skeletons during its moulting period. J Mater Sci 38, 20872093.CrossRefGoogle Scholar
Sparkes, S. & Greenaway, P. (1984). The haemolymph as a storage site for cuticular ions during premoult in the freshwater/land crab Holthuisana transversa. J Exp Biol 113, 4354.CrossRefGoogle Scholar
Testeniere, O., Hecker, A., LE Gurun, S., Quennedey, B., Graf, F. & Luquet, G. (2012). Characterization and spatiotemporal expression of orchestin, a gene encoding an ecdysone-inducible protein from a crustacean organic matrix. Biochem J 361, 327335.CrossRefGoogle Scholar
Thormann, E., Mizuno, H., Jansson, K., Hedin, N., Fernandez, M.S., Arias, J.L., Rutland, M.W., Pai, R.K. & Bergström, L. (2012). Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4, 39103916.CrossRefGoogle ScholarPubMed
Travis, D.F. (1955). The molting cycle of the spiny lobster, Panulirus argus latreille. II. Pre-ecdysial histological and histochemical changes in the hepatopancreas and integumental tisues. Biol Bull 108, 88112.CrossRefGoogle Scholar
Travis, D.F. (1960). The deposition of the skeletal structures in the Crustacea. I. The histology of the gastrolith skeletal tissue complex and the gastrolith in the crayfish, Orconectes (Cambarus) virilis Hagen—Decapoda. Biol Bull 118, 137149.CrossRefGoogle Scholar
Travis, D.F. (1963). Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann N Y Acad Sci 109, 177245.CrossRefGoogle ScholarPubMed
Tsutsui, N., Ishii, K., Takagi, Y., Watanabe, T. & Nagasawa, H. (1999). Cloning and expression of a cDNA encoding an insoluble matrix protein in the gastroliths of a crayfish, Procambarus clarkii. Zoolog Sci 16, 619628.CrossRefGoogle Scholar
Urmos, J., Sharma, S.K. & Mackenzie, F.T. (1991). Characterization of some biogenic carbonates with Raman spectroscopy. Am Mineral 76, 641646.Google Scholar
Wehrmeister, U., Jacob, D.E., Soldati, A.L., Loges, N., Häger, T. & Hofmeister, W. (2010). Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. J Raman Spectrosc 42, 926935.CrossRefGoogle Scholar
Wheeler, A.P., George, J.W. & Evans, C.A. (1981). Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212, 13971398.CrossRefGoogle ScholarPubMed
Zhang, F., Cai, W., Zhu, J., Sun, Z. & Zhang, J. (2011). In situ Raman spectral mapping study on the microscale fibers in blue coral (Heliopora coerulea) skeletons. Anal Chem 83, 78707875.CrossRefGoogle Scholar
Ziegler, A. (2003). Variation of calcium deposition in terrestrial isopods. In The Biology of Terrestrial Isopods, vol. 2 Sfenthourakis, S., de Araujo, P.B., Hornung, E., Schmalfuss, H., Taiti, S. & Szlavecz, K. (Eds.), pp. 299309. Leiden: Koninklijke Brill NV.Google Scholar
Ziegler, A., Fabritius, H. & Hagedorn, M. (2005). Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods. Micron 36, 137153.CrossRefGoogle ScholarPubMed
Ziegler, A. & Miller, B. (1997). Ultrastructure of CaCO3 deposits of terrestrial isopods (Crustacea, Oniscidea). Zoomorphol 117, 181187.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calcium Deposits in the Crayfish, Cherax quadricarinatus: Microstructure Versus Elemental Distribution
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Calcium Deposits in the Crayfish, Cherax quadricarinatus: Microstructure Versus Elemental Distribution
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Calcium Deposits in the Crayfish, Cherax quadricarinatus: Microstructure Versus Elemental Distribution
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *